RclusTool0.91.61 package

Graphical Toolbox for Clustering and Classification of Data Frames

abdPlot

Abundances barplot

abdPlotTabs

Abundances barplots inside Tk tabs.

abdPlotTabsGUI

Abundances barplots inside Tk tabs.

addClustering

Clustering addition

addIds2Sampling

Adding Ids To a Sampling

addOperation

Add operation

analyzePlot

Plot for data exploration/analysis

applyPreprocessing

Preprocessing application

bipartitionShi

Spectral clustering

buildBatchTab

Batch process tab

buildClusteringSample

Clustering loading

buildConstraintsMatrix

Constraints matrices

buildImportTab

Build Import tab

buildNameOperation

Build Name Operation

buildPreprocessTab

build Preprocess tab

buildSemisupTab

Semi-Supervised tab

buildsupTab

Supervised tab

buildUnsupTab

Unsupervised tab

clusterDensity

Clusters density computation

clusterSummary

Clusters summaries computation

computeCKmeans

Constrained K-means clustering

computeCSC

Constrained Spectral Clustering

computeEM

Expectation-Maximization clustering

computeGap

Gap computation

computeGap2

Gap computation

computeGaussianSimilarity

Gaussian similarity

computeGaussianSimilarityZP

Gaussian similarity

computeItemsSample

Prediction of number of cells in colonies

computeItemsSampleGUI

GUI to estimate the number of cells in colonies for each cluster

computeKmeans

K-means clustering

computePcaNbDims

Number of dimensions for PCA

computePcaSample

Principal Components Analysis

computeSampling

Sampling raw data matrix

computeSemiSupervised

Semi-supervised clustering

computeSpectralEmbeddingSample

Spectral embedding

computeSupervised

Supervised classification

computeUnSupervised

Unsupervised clustering

convNamesPairsToIndexPairs

Conversion of a set of names pairs to matrix of index pairs (2 columns...

convNamesToIndex

Conversion of element names to indexes

cor.mtest

Correlation test.

countItems

Manually counting the number of cells in colonies

countItemsSampleGUI

GUI to manually count the number of cells in colonies

createResFolder

Results directories creation

critMNCut

Multiple Normalized Cut

detailOperation

detail Operation

dot-logoFrame

Logo frame in the graphical user interface

dropTrainSetVars

Parameters dropping

ElbowFinder

Elbow Finder

ElbowPlot

Elbow Plot.

extractFeaturesFromSummary

Extraction of features from a summary object.

extractProtos

Prototypes extraction

featSpaceNameConvert

Feature Space Name Conversion

FindNumberK

Automatic estimation of the number of clusters

formatLabelSample

Labels formatting

formatParameterList

Format Parameter List

guessFileEncoding

File Encoding Identification.

imgClassif

Images clustering

importLabelSample

Labels importation

importSample

Sample importation

initBatchTab

batch tab

initImportTab

import tab

initParameters

Parameters initialization

initPreprocessTab

build Preprocess tab

initSemisupTab

Semi-Supervised tab

initSupTab

supervised tab

initUnsupTab

Unsupervised tab

itemsModel

Predictive models computation for the number of cells in colonies

KmeansAutoElbow

Kmeans clustering with automatic estimation of number of clusters

KmeansQuick

Quick kmeans clustering

KwaySSSC

Semi-supervised spectral clustering

listDerivableFeatureSpaces

Builds list of derivable feature spaces

loadPreprocessFile

Preprocessing loading

loadPreviousRes

Previous clustering results loading

loadSample

Sample loading

loadSummary

Summaries loading

MainWindow

Main window

makeFeatureSpaceOperations

Make operation config object to build feature spaces

makeTitle

RclusTool makeTitle.

matchNames

Match Names

measureConstraintsOk

Rates of constraints satisfaction

measureMNCut

Multiple Normalized Cut

messageConsole

RclusTool consoleMessage.

nameClusters

Clusters renaming

plotDensity2D

plot Variables Density

plotProfile

Profile and image plotting

plotProfileExtract

Profile and image plotting

plotSampleFeatures

2D-features scatter-plot

previewCSVfile

Preview CSV file

purgeSample

Sample purging

RclusToolGUI

Username and user type selection

readTrainSet

Training set reading

removeZeros

Zeros replacement

saveCalcul

Object saving

saveClustering

Clustering saving

saveCounts

Count saving

saveLogFile

Log file saving

saveManualProtos

Manual prototypes saving

savePreprocess

Preprocessing exportation

saveSummary

Clusters summaries saving

search.neighbour

Search neighbour

sigClassif

Signals clustering

sortCharAsNum

Character vector numeric sorting

sortLabel

Clusters labels sorting

spectralClustering

Spectral clustering

spectralClusteringNg

Spectral clustering

spectralEmbeddingNg

Spectral embedding

tk2add.notetab

Add notetab.

tk2delete.notetab

Delete notetab inside a tk-notebook

tk2draw.notetab

Draw in a Notetab.

tk2notetab.RclusTool

RclusTool tk2notetab.

tkEmptyLine

RclusTool tkEmptyLine.

tkrplot.RclusTool

RclusTool tkrplot.

tkrreplot.RclusTool

RclusTool tkrreplot.

toStringDataFrame

To String Data Frame

updateClustersNames

Clusters names updating

visualizeSampleClustering

Interactive figure with 2D scatter-plot

Graphical toolbox for clustering and classification of data frames. It proposes a graphical interface to process clustering and classification methods on features data-frames, and to view initial data as well as resulted cluster or classes. According to the level of available labels, different approaches are proposed: unsupervised clustering, semi-supervised clustering and supervised classification. To assess the processed clusters or classes, the toolbox can import and show some supplementary data formats: either profile/time series, or images. These added information can help the expert to label clusters (clustering), or to constrain data frame rows (semi-supervised clustering), using Constrained spectral embedding algorithm by Wacquet et al. (2013) <doi:10.1016/j.patrec.2013.02.003> and the methodology provided by Wacquet et al. (2013) <doi:10.1007/978-3-642-35638-4_21>.

  • Maintainer: Pierre-Alexandre Hebert
  • License: GPL (>= 2)
  • Last published: 2025-05-13