## S3 method for class 'DEoptim'summary(object,...)## S3 method for class 'DEoptim'plot(x, plot.type = c("bestmemit","bestvalit","storepop"),...)
Arguments
object: an object of class DEoptim; usually, a result of a call to DEoptim.
x: an object of class DEoptim; usually, a result of a call to DEoptim.
plot.type: should we plot the best member at each iteration, the best value at each iteration or the intermediate populations?
...: further arguments passed to or from other methods.
Details
Members of the class DEoptim have a plot method that accepts the argument plot.type. plot.type = "bestmemit" results in a plot of the parameter values that represent the lowest value of the objective function each generation. plot.type = "bestvalit" plots the best value of the objective function each generation. Finally, plot.type = "storepop" results in a plot of stored populations (which are only available if these have been saved by setting the control argument of DEoptim appropriately). Storing intermediate populations allows us to examine the progress of the optimization in detail. A summary method also exists and returns the best parameter vector, the best value of the objective function, the number of generations optimization ran, and the number of times the objective function was evaluated.
Note
Further details and examples of the package DEoptim can be found in Mullen et al. (2009) and Ardia et al. (2010).
Please cite the package in publications.
Author(s)
For RcppDE: Dirk Eddelbuettel.
For DEoptim: David Ardia, Katharine Mullen katharine.mullen@nist.gov , Brian Peterson and Joshua Ulrich.
See Also
DEoptim and DEoptim.control.
References
Mullen, K.M., Ardia, D., Gil, D.L, Windover, D., Cline, J. (2009) DEoptim: An Package for Global Optimization by Differential Evolution. URL https://www.ssrn.com/abstract=1526466
Ardia, D., Boudt, K., Carl, P., Mullen, K.M., Peterson, B.G. (2010) Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization. URL https://www.ssrn.com/abstract=1584905
Examples
## Rosenbrock Banana function## The function has a global minimum f(x) = 0 at the point (0,0). ## Note that the vector of parameters to be optimized must be the first ## argument of the objective function passed to DEoptim. Rosenbrock <-function(x){ x1 <- x[1] x2 <- x[2]100*(x2 - x1 * x1)^2+(1- x1)^2} lower <- c(-10,-10) upper <--lower
set.seed(1234) outDEoptim <- DEoptim(Rosenbrock, lower, upper)## print output information summary(outDEoptim)## plot the best members plot(outDEoptim, type ='b')## plot the best values dev.new() plot(outDEoptim, plot.type ="bestvalit", type ='b', col ='blue')## rerun the optimization, and store intermediate populations outDEoptim <- DEoptim(Rosenbrock, lower, upper, DEoptim.control(itermax =500, storepopfrom =1, storepopfreq =2)) summary(outDEoptim)## plot intermediate populations dev.new() plot(outDEoptim, plot.type ="storepop")## Wild function Wild <-function(x)10* sin(0.3* x)* sin(1.3* x^2)+0.00001* x^4+0.2* x +80 outDEoptim = DEoptim(Wild, lower =-50, upper =50, DEoptim.control(trace =FALSE, storepopfrom =50, storepopfreq =1)) plot(outDEoptim, type ='b') dev.new() plot(outDEoptim, plot.type ="bestvalit", type ='b')## Not run:## an example with a normal mixture model: requires package mvtnorm library(mvtnorm)## neg value of the density function negPdfMix <-function(x){ tmp <-0.5* dmvnorm(x, c(-3,-3))+0.5* dmvnorm(x, c(3,3))-tmp
}## wrapper plotting function plotNegPdfMix <-function(x1, x2) negPdfMix(cbind(x1, x2))## contour plot of the mixture x1 <- x2 <- seq(from =-10.0, to =10.0, by =0.1) thexlim <- theylim <- range(x1) z <- outer(x1, x2, FUN = plotNegPdfMix) contour(x1, x2, z, nlevel =20, las =1, col = rainbow(20), xlim = thexlim, ylim = theylim) set.seed(1234) outDEoptim <- DEoptim(negPdfMix, c(-10,-10), c(10,10), DEoptim.control(NP =100, itermax =100, storepopfrom =1, storepopfreq =5))## convergence plot dev.new() plot(outDEoptim)## the intermediate populations indicate the bi-modality of the function dev.new() plot(outDEoptim, plot.type ="storepop")## End(Not run)