Truncated Normal Distribution Expectation
Calculate expectation of Truncated Normal distributions
etn(.mean = rep(0, 1), .sd = rep(1, length(.mean)), .low = rep(-Inf, length(.mean)), .high = rep(Inf, length(.mean)), .checks = TRUE)
.mean
: Length K vector with the means of the K Normal distributions prior to truncation.sd
: Length K vector with the standard deviations of the K Normal distributions prior to truncation.low
: Length K vector with the lower truncation bound of the K Normal distributions prior to truncation.high
: Length K vector with the upper truncation bound of the K Normal distributions prior to truncation.checks
: Length 1 logical vector indicating whether to perform checks (safer) or not (faster) on the input parametersA length K vector of expectations corresponding to the Truncated Normal distributions. NAs are returned (with a warning) for invalid parameter values.
The special values of -Inf and Inf are valid values in the .low and .high arguments, respectively.
etn() ## 0 etn(0, 1, -Inf, Inf) ## 0 etn(0, 1, -9999, 9999) ## 0 etn(0, 1, 0, Inf) ## 0.798 etn(0, 1, Inf, -Inf) ## NA with warning etn(c(0, 0), c(1, 1), c(-Inf, 5), c(1, Inf) ) ## multiple expectations
Jonathan Olmsted