EEG function

The Extended Exponential Geometric family

The Extended Exponential Geometric family

EEG(mu.link = "log", sigma.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.

Returns

Returns a gamlss.family object which can be used to fit a EEG distribution in the gamlss() function.

Details

The Extended Exponential Geometric distribution with parameters mu

and sigma has density given by

f(x)=μσexp(μx)(1(1σ)exp(μx))2,f(x)= \mu \sigma \exp(-\mu x)(1 - (1 - \sigma)\exp(-\mu x))^{-2},

for x>0x > 0, μ>0\mu > 0 and σ>0\sigma > 0.

Examples

# Generating some random values with # known mu, sigma, nu and tau y <- rEEG(n=100, mu = 1, sigma =1.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, family=EEG, control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma, nu and tau # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n, min=0.1, max=0.2) x2 <- runif(n, min=0.1, max=0.15) mu <- exp(0.75 - x1) sigma <- exp(0.5 - x2) x <- rEEG(n=n, mu, sigma) mod <- gamlss(x~x1, sigma.fo=~x2, family=EEG, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma")

References

Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")

Rdpack::insert_ref(key="adamidis2005extension",package="RelDists")

See Also

dEEG

Author(s)

Johan David Marin Benjumea, johand.marin@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22