mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
nu.link: defines the nu.link, with "log" link as the default for the nu parameter.
Returns
Returns a gamlss.family object which can be used to fit a EW distribution in the gamlss() function.
Details
The Exponentiated Weibull Distribution with parameters mu, sigma and nu has density given by
f(x)=νμσxσ−1exp(−μxσ)(1−exp(−μxσ))ν−1,
for x > 0.
Examples
# Example 1# Generating some random values with# known mu, sigma and nu# Will not be run this example because high number is cycles# is needed in order to get good estimates## Not run:y <- rEW(n=100, mu=2, sigma=1.5, nu=0.5)# Fitting the modelrequire(gamlss)mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='EW', control=gamlss.control(n.cyc=5000, trace=FALSE))# Extracting the fitted values for mu, sigma and nu# using the inverse link functionexp(coef(mod, what='mu'))exp(coef(mod, what='sigma'))exp(coef(mod, what='nu'))## End(Not run)# Example 2# Generating random values under some model# Will not be run this example because high number is cycles# is needed in order to get good estimates## Not run:n <-200x1 <- rpois(n, lambda=2)x2 <- runif(n)mu <- exp(2+-3* x1)sigma <- exp(3-2* x2)nu <-2x <- rEW(n=n, mu, sigma, nu)mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=EW, control=gamlss.control(n.cyc=5000, trace=FALSE))coef(mod, what="mu")coef(mod, what="sigma")exp(coef(mod, what="nu"))## End(Not run)