EW function

The Exponentiated Weibull family

The Exponentiated Weibull family

The Exponentiated Weibull distribution

EW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a EW distribution in the gamlss() function.

Details

The Exponentiated Weibull Distribution with parameters mu, sigma and nu has density given by

f(x)=νμσxσ1exp(μxσ)(1exp(μxσ))ν1,f(x)=\nu \mu \sigma x^{\sigma-1} \exp(-\mu x^\sigma) (1-\exp(-\mu x^\sigma))^{\nu-1},

for x > 0.

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu # Will not be run this example because high number is cycles # is needed in order to get good estimates ## Not run: y <- rEW(n=100, mu=2, sigma=1.5, nu=0.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='EW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) ## End(Not run) # Example 2 # Generating random values under some model # Will not be run this example because high number is cycles # is needed in order to get good estimates ## Not run: n <- 200 x1 <- rpois(n, lambda=2) x2 <- runif(n) mu <- exp(2 + -3 * x1) sigma <- exp(3 - 2 * x2) nu <- 2 x <- rEW(n=n, mu, sigma, nu) mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=EW, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") exp(coef(mod, what="nu")) ## End(Not run)

See Also

dEW

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22