GGD function

The Generalized Gompertz family

The Generalized Gompertz family

GGD(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a GGD distribution in the gamlss() function. .

Details

The Generalized Gompertz Distribution with parameters mu, sigma and nu has density given by

f(x)=νμexp(μσ(exp(σx1)))(1exp(μσ(exp(σx1))))(ν1),f(x)= \nu \mu \exp(-\frac{\mu}{\sigma}(\exp(\sigma x - 1))) (1 - \exp(-\frac{\mu}{\sigma}(\exp(\sigma x - 1))))^{(\nu - 1)} ,

for x0x \geq 0, μ>0\mu > 0, σ0\sigma \geq 0 and ν>0\nu > 0

Examples

#Example 1 # Generating some random values with # known mu, sigma, nu and tau y <- rGGD(n=1000, mu=1, sigma=0.3, nu=1.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='GGD', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- exp(0.5 - x1) sigma <- exp(-1 - x2) nu <- 1.5 x <- rGGD(n=n, mu, sigma, nu) mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=GGD, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") exp(coef(mod, what="nu"))

References

Rdpack::insert_ref(key="el2013generalized",package="RelDists")

See Also

dGGD

Author(s)

Johan David Marin Benjumea, johand.marin@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22