GammaW function

The Gamma Weibull family

The Gamma Weibull family

GammaW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a GammaW distribution in the gamlss() function.

Details

The Gamma Weibull distribution with parameters mu, sigma and nu has density given by

f(x)=σμνΓ(ν)xνσ1exp(μxσ),f(x)= \frac{\sigma \mu^{\nu}}{\Gamma (\nu)} x^{\nu \sigma - 1} \exp(-\mu x^\sigma),

for x>0x > 0, μ>0\mu > 0, σ0\sigma \geq 0 and ν>0\nu > 0.

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu y <- rGammaW(n=100, mu = 0.5, sigma = 2, nu=1) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='GammaW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n) x2 <- runif(n) mu <- exp(-1.6 * x1) sigma <- exp(1.1 - 1 * x2) nu <- 1 x <- rGammaW(n=n, mu, sigma, nu) mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=GammaW, control=gamlss.control(n.cyc=50000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") coef(mod, what='nu')

References

Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")

Rdpack::insert_ref(key="stacy1962generalization",package="RelDists")

See Also

dGammaW

Author(s)

Johan David Marin Benjumea, johand.marin@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22