IW function

The Inverse Weibull family

The Inverse Weibull family

The Inverse Weibull distribution

IW(mu.link = "log", sigma.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.

Returns

Returns a gamlss.family object which can be used to fit a IW distribution in the gamlss() function.

Details

The Inverse Weibull distribution with parameters mu, sigma has density given by

f(x)=μσxσ1exp(μxσ)f(x) = \mu \sigma x^{-\sigma-1} \exp(\mu x^{-\sigma})

for x>0x > 0, μ>0\mu > 0 and σ>0\sigma > 0

Examples

# Example 1 # Generating some random values with # known mu and sigma y <- rIW(n=100, mu=5, sigma=2.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, mu.fo=~1, sigma.fo=~1, family='IW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) # Example 2 # Generating random values under some model n <- 200 x1 <- rpois(n, lambda=2) x2 <- runif(n) mu <- exp(2 + -1 * x1) sigma <- exp(2 - 2 * x2) x <- rIW(n=n, mu, sigma) mod <- gamlss(x~x1, mu.fo=~1, sigma.fo=~x2, family=IW, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma")

References

Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")

Rdpack::insert_ref(key="drapella1993complementary",package="RelDists")

See Also

dIW

Author(s)

Johan David Marin Benjumea, johand.marin@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22