LW function

The Log-Weibull family

The Log-Weibull family

The Log-Weibull distribution

LW(mu.link = "identity", sigma.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.

Returns

Returns a gamlss.family object which can be used to fit a LW distribution in the gamlss() function.

Details

The Log-Weibull Distribution with parameters mu

and sigma has density given by

f(y)=(1/σ)e((yμ)/σ)exp{e((yμ)/σ)},f(y)=(1/\sigma) e^{((y - \mu)/\sigma)} exp\{-e^{((y - \mu)/\sigma)}\},

for - infty < y < infty.

Examples

# Example 1 # Generating some random values with # known mu and sigma y <- rLW(n=100, mu=0, sigma=1.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, family= 'LW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu and sigma # using the inverse link function coef(mod, 'mu') exp(coef(mod, 'sigma')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- 1.5 - 3 * x1 sigma <- exp(1.4 - 2 * x2) x <- rLW(n=n, mu, sigma) mod <- gamlss(x~x1, sigma.fo=~x2, family=LW, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma")

References

Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")

Rdpack::insert_ref(key="Gumbel1958",package="RelDists")

See Also

dLW

Author(s)

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22