MOEIW function

The Marshall-Olkin Extended Inverse Weibull family

The Marshall-Olkin Extended Inverse Weibull family

MOEIW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a MOEIW distribution in the gamlss() function.

Details

The Marshall-Olkin Extended Inverse Weibull distribution with parameters mu, sigma and nu has density given by

f(x)=μσνx(σ+1)exp{μxσ}{ν(ν1)exp{μxσ}}2,f(x) = \frac{\mu \sigma \nu x^{-(\sigma + 1)} exp\{{-\mu x^{-\sigma}}\}}{\{\nu -(\nu-1) exp\{{-\mu x ^{-\sigma}}\} \}^{2}},

for x > 0.

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu y <- rMOEIW(n=400, mu=0.6, sigma=1.7, nu=0.3) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='MOEIW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 400 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- exp(-2.02 + 3 * x1) sigma <- exp(2.23 - 2 * x2) nu <- 0.3 x <- rMOEIW(n=n, mu, sigma, nu) mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=MOEIW, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") exp(coef(mod, what="nu"))

References

Rdpack::insert_ref(key="okasha2017",package="RelDists")

See Also

dMOEIW

Author(s)

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22