MOEW function

The Marshall-Olkin Extended Weibull family

The Marshall-Olkin Extended Weibull family

MOEW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a MOEW distribution in the gamlss() function.

Details

The Marshall-Olkin Extended Weibull distribution with parameters mu, sigma and nu has density given by

f(x)=μσν(νx)σ1exp{(νx)σ}{1(1μ)exp{(νx)σ}}2,f(x) = \frac{\mu \sigma \nu (\nu x)^{\sigma - 1} exp\{{-(\nu x )^{\sigma}}\}}{\{1-(1-\mu) exp\{{-(\nu x )^{\sigma}}\} \}^{2}},

for x > 0.

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu y <- rMOEW(n=400, mu=0.5, sigma=0.7, nu=1) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='MOEW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 500 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- exp(-1.20 + 3 * x1) sigma <- exp(0.84 - 2 * x2) nu <- 1 x <- rMOEW(n=n, mu, sigma, nu) mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=MOEW, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") exp(coef(mod, what="nu"))

References

Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")

Rdpack::insert_ref(key="ghitany2005",package="RelDists")

See Also

dMOEW

Author(s)

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22