QXGP function

The Quasi XGamma Poisson family

The Quasi XGamma Poisson family

QXGP(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a QXGP distribution in the gamlss() function.

Details

The Quasi XGamma Poisson distribution with parameters mu, sigma and nu has density given by

c("f(x)=K(mu,sigma,nu)(fracsigma2x22+mu)\nf(x)= K(\\mu, \\sigma, \\nu)(\\frac {\\sigma^{2} x^{2}}{2} + \\mu)\n", "exp(fracnuexp(sigmax)(1+mu+sigmax+fracsigma2x22)1+musigmax), exp(\\frac{\\nu exp(-\\sigma x)(1 + \\mu + \\sigma x + \\frac {\\sigma^{2}x^{2}}{2})}{1+\\mu} - \\sigma x),")

for x>0x > 0, μ>0\mu> 0, σ>0\sigma> 0, ν>1\nu> 1.

where

K(μ,σ,ν)=νσ(exp(ν)1)(1+μ)K(\mu, \sigma, \nu) = \frac{\nu \sigma}{(exp(\nu)-1)(1+\mu)}

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu y <- rQXGP(n=200, mu=4, sigma=2, nu=3) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='QXGP', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 2000 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- exp(-2.19 + 3 * x1) sigma <- exp(1 - 2 * x2) nu <- 1 x <- rQXGP(n=n, mu, sigma, nu) mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=QXGP, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") exp(coef(mod, what="nu"))

References

Rdpack::insert_ref(key="subhradev2018",package="RelDists")

See Also

dQXGP

Author(s)

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22