RW function

The Reflected Weibull family

The Reflected Weibull family

Reflected Weibull distribution

RW(mu.link = "log", sigma.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.

Returns

Returns a gamlss.family object which can be used to fit a RW distribution in the gamlss() function.

Details

The Reflected Weibull Distribution with parameters mu

and sigma has density given by

f(y)=μσ(y)σ1eμ(y)σ,f(y) = \mu\sigma (-y) ^{\sigma - 1} e ^ {-\mu(-y)^\sigma},

for y < 0

Examples

# Example 1 # Generating some random values with # known mu and sigma y <- rRW(n=100, mu=1, sigma=1) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, family= 'RW', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu and sigma # using the inverse link function exp(coef(mod, 'mu')) exp(coef(mod, 'sigma')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- exp(1.5 - 1.5 * x1) sigma <- exp(2 - 2 * x2) x <- rRW(n=n, mu, sigma) mod <- gamlss(x~x1, sigma.fo=~x2, family=RW, control=gamlss.control(n.cyc=5000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma")

References

Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")

Rdpack::insert_ref(key="Clifford1973",package="RelDists")

See Also

dRW

Author(s)

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22