WG function

The Weibull Geometric family

The Weibull Geometric family

The Weibull Geometric distribution

WG(mu.link = "log", sigma.link = "log", nu.link = "logit")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a WG distribution in the gamlss() function.

Details

The weibull geometric distribution with parameters mu, sigma and nu has density given by

c("f(x) = (\\sigma \\mu^\\sigma (1-\\nu) x^(\\sigma - 1) \\exp(-(\\mu x)^\\sigma)) \n", "(1- \\nu \\exp(-(\\mu x)^\\sigma))^{-2},")

for x>0x > 0, μ>0\mu > 0, σ>0\sigma > 0 and 0<ν<10 < \nu < 1.

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu y <- rWG(n=100, mu = 0.9, sigma = 2, nu = 0.5) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='WG', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 200 x1 <- runif(n) x2 <- runif(n) mu <- exp(- 0.2 * x1) sigma <- exp(1.2 - 1 * x2) nu <- 0.5 x <- rWG(n=n, mu, sigma, nu) mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=WG, control=gamlss.control(n.cyc=50000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") coef(mod, what='nu')

References

Rdpack::insert_ref(key="barreto2011weibull",package="RelDists")

See Also

dWG

Author(s)

Johan David Marin Benjumea, johand.marin@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22