WGEE function

The Weigted Generalized Exponential-Exponential family

The Weigted Generalized Exponential-Exponential family

WGEE(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

  • mu.link: defines the mu.link, with "log" link as the default for the mu parameter.
  • sigma.link: defines the sigma.link, with "log" link as the default for the sigma.
  • nu.link: defines the nu.link, with "log" link as the default for the nu parameter.

Returns

Returns a gamlss.family object which can be used to fit a WGEE distribution in the gamlss() function.

Details

The Weigted Generalized Exponential-Exponential distribution with parameters mu, sigma and nu has density given by

f(x)=σνexp(νx)(1exp(νx))σ1(1exp(μνx))/1σB(μ+1,σ),f(x)= \sigma \nu \exp(-\nu x) (1 - \exp(-\nu x))^{\sigma - 1} (1 - \exp(-\mu \nu x)) / 1 - \sigma B(\mu + 1, \sigma),

for x>0x > 0, μ>0\mu > 0, σ>0\sigma > 0 and ν>0\nu > 0.

Examples

# Example 1 # Generating some random values with # known mu, sigma and nu y <- rWGEE(n=1000, mu = 5, sigma = 0.5, nu = 1) # Fitting the model require(gamlss) mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='WGEE', control=gamlss.control(n.cyc=5000, trace=FALSE)) # Extracting the fitted values for mu, sigma and nu # using the inverse link function exp(coef(mod, what='mu')) exp(coef(mod, what='sigma')) exp(coef(mod, what='nu')) # Example 2 # Generating random values under some model n <- 500 x1 <- runif(n, min=0.4, max=0.6) x2 <- runif(n, min=0.4, max=0.6) mu <- exp(2 - x1) sigma <- exp(1 - 3*x2) nu <- 1 x <- rWGEE(n=n, mu, sigma, nu) mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=WGEE, control=gamlss.control(n.cyc=50000, trace=FALSE)) coef(mod, what="mu") coef(mod, what="sigma") exp(coef(mod, what="nu"))

References

Rdpack::insert_ref(key="mahdavi2015two",package="RelDists")

See Also

dWGEE

Author(s)

Johan David Marin Benjumea, johand.marin@udea.edu.co

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22