The four parameter Exponentiated Generalized Gamma distribution
Density, distribution function, quantile function, random generation and hazard function for the four parameter Exponentiated Generalized Gamma distribution with parameters mu
, sigma
, nu
and tau
.
dEGG(x, mu, sigma, nu, tau, log = FALSE) pEGG(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE) qEGG(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE) rEGG(n, mu, sigma, nu, tau) hEGG(x, mu, sigma, nu, tau)
x, q
: vector of quantiles.mu
: parameter.sigma
: parameter.nu
: parameter.tau
: parameter.log, log.p
: logical; if TRUE, probabilities p are given as log(p).lower.tail
: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].p
: vector of probabilities.n
: number of observations.dEGG
gives the density, pEGG
gives the distribution function, qEGG
gives the quantile function, rEGG
generates random deviates and hEGG
gives the hazard function.
Four-Parameter Exponentiated Generalized Gamma distribution with parameters mu
, sigma
, nu
and tau
has density given by
for x > 0.
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters ## The probability density function curve(dEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.000001, to=1.5, ylim=c(0, 2.5), col="red", las=1, ylab="f(x)") ## The cumulative distribution and the Reliability function par(mfrow=c(1, 2)) curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.000001, to=1.5, col="red", las=1, ylab="F(x)") curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5, lower.tail=FALSE), from=0.000001, to=1.5, col="red", las=1, ylab="R(x)") ## The quantile function p <- seq(from=0, to=0.99999, length.out=100) plot(x=qEGG(p, mu=0.1, sigma=0.8, nu=10, tau=1.5), y=p, xlab="Quantile", las=1, ylab="Probability") curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.00001, add=TRUE, col="red") ## The random function hist(rEGG(n=100, mu=0.1, sigma=0.8, nu=10, tau=1.5), freq=FALSE, xlab="x", las=1, main="") curve(dEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.0001, to=2, add=TRUE, col="red") ## The Hazard function curve(hEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.0001, to=1.5, col="red", ylab="Hazard function", las=1) par(old_par) # restore previous graphical parameters
Rdpack::insert_ref(key="almalki2014modifications",package="RelDists")
Rdpack::insert_ref(key="cordeiro2011",package="RelDists")
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co