dEOFNH function

The Extended Odd Frechet-Nadarajah-Haghighi

The Extended Odd Frechet-Nadarajah-Haghighi

Density, distribution function, quantile function, random generation and hazard function for the Extended Odd Fr?chet-Nadarajah-Haghighi distribution with parameters mu, sigma, nu and tau.

dEOFNH(x, mu, sigma, nu, tau, log = FALSE) pEOFNH(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE) qEOFNH(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE) rEOFNH(n, mu, sigma, nu, tau) hEOFNH(x, mu, sigma, nu, tau)

Arguments

  • x, q: vector of quantiles.
  • mu: parameter.
  • sigma: parameter.
  • nu: parameter.
  • tau: parameter.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
  • p: vector of probabilities.
  • n: number of observations.

Returns

dEOFNH gives the density, pEOFNH gives the distribution function, qEOFNH gives the quantile function, rEOFNH

generates random numbers and hEOFNH gives the hazard function.

Details

Tthe Extended Odd Frechet-Nadarajah-Haghighi mu, sigma, nu and tau has density given by

f(x)=μσντ(1+νx)σ1e(1(1+νx)σ)[1(1e(1(1+νx)σ))μ]τ1(1e(1(1+νx)σ))μτ+1e[(1e(1(1+νx)σ))μ1]τ,f(x)= \frac{\mu\sigma\nu\tau(1+\nu x)^{\sigma-1}e^{(1-(1+\nu x)^\sigma)}[1-(1-e^{(1-(1+\nu x)^\sigma)})^{\mu}]^{\tau-1}}{(1-e^{(1-(1+\nu x)^{\sigma})})^{\mu\tau+1}} e^{-[(1-e^{(1-(1+\nu x)^\sigma)})^{-\mu}-1]^{\tau}},

for x>0x > 0, μ>0\mu > 0, σ>0\sigma > 0, ν>0\nu > 0 and τ>0\tau > 0.

Examples

old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters ##The probability density function par(mfrow=c(1,1)) curve(dEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, to=10, ylim=c(0, 0.25), col="red", las=1, ylab="f(x)") ## The cumulative distribution and the Reliability function par(mfrow = c(1, 2)) curve(pEOFNH(x,mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from = 0, to = 10, ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)") curve(pEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1, lower.tail = FALSE), from = 0, to = 10, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)") ##The quantile function p <- seq(from=0, to=0.99999, length.out=100) plot(x=qEOFNH(p, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), y=p, xlab="Quantile", las=1, ylab="Probability") curve(pEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, add=TRUE, col="red") ##The random function hist(rEOFNH(n=10000, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), freq=FALSE, xlab="x", las=1, main="") curve(dEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, add=TRUE, col="red", ylim=c(0,1.25)) ##The Hazard function par(mfrow=c(1,1)) curve(hEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, to=10, ylim=c(0, 1), col="red", ylab="Hazard function", las=1) par(old_par) # restore previous graphical parameters

References

Rdpack::insert_ref(key="nasiru2018extended",package="RelDists")

Author(s)

Helber Santiago Padilla

  • Maintainer: Jaime Mosquera
  • License: GPL-3
  • Last published: 2022-12-22