The Exponentiated Weibull distribution
Density, distribution function, quantile function, random generation and hazard function for the exponentiated Weibull distribution with parameters mu
, sigma
and nu
.
dEW(x, mu, sigma, nu, log = FALSE) pEW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE) qEW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE) rEW(n, mu, sigma, nu) hEW(x, mu, sigma, nu)
x, q
: vector of quantiles.mu
: scale parameter.sigma, nu
: shape parameters.log, log.p
: logical; if TRUE, probabilities p are given as log(p).lower.tail
: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].p
: vector of probabilities.n
: number of observations.dEW
gives the density, pEW
gives the distribution function, qEW
gives the quantile function, rEW
generates random deviates and hEW
gives the hazard function.
The Exponentiated Weibull Distribution with parameters mu
, sigma
and nu
has density given by
for , , and .
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters ## The probability density function curve(dEW(x, mu=2, sigma=1.5, nu=0.5), from=0, to=2, ylim=c(0, 2.5), col="red", las=1, ylab="f(x)") ## The cumulative distribution and the Reliability function par(mfrow=c(1, 2)) curve(pEW(x, mu=2, sigma=1.5, nu=0.5), from=0, to=2, col="red", las=1, ylab="F(x)") curve(pEW(x, mu=2, sigma=1.5, nu=0.5, lower.tail=FALSE), from=0, to=2, col="red", las=1, ylab="R(x)") ## The quantile function p <- seq(from=0, to=0.99999, length.out=100) plot(x=qEW(p, mu=2, sigma=1.5, nu=0.5), y=p, xlab="Quantile", las=1, ylab="Probability") curve(pEW(x, mu=2, sigma=1.5, nu=0.5), from=0, add=TRUE, col="red") ## The random function hist(rEW(n=10000, mu=2, sigma=1.5, nu=0.5), freq=FALSE, xlab="x", las=1, main="") curve(dEW(x, mu=2, sigma=1.5, nu=0.5), from=0, add=TRUE, col="red") ## The Hazard function par(mfrow=c(1,1)) curve(hEW(x, mu=2, sigma=1.5, nu=0.5), from=0, to=2, ylim=c(0, 7), col="red", ylab="Hazard function", las=1) par(old_par) # restore previous graphical parameters
EW