The Generalized modified Weibull distribution
Density, distribution function, quantile function, random generation and hazard function for the generalized modified weibull distribution with parameters mu
, sigma
, nu
and tau
.
dGMW(x, mu, sigma, nu, tau, log = FALSE) pGMW(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE) qGMW(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE) rGMW(n, mu, sigma, nu, tau) hGMW(x, mu, sigma, nu, tau, log = FALSE)
x, q
: vector of quantiles.mu
: scale parameter.sigma
: shape parameter.nu
: shape parameter.tau
: acceleration parameter.log, log.p
: logical; if TRUE, probabilities p are given as log(p).lower.tail
: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].p
: vector of probabilities.n
: number of observations.dGMW
gives the density, pGMW
gives the distribution function, qGMW
gives the quantile function, rGMW
generates random deviates and hGMW
gives the hazard function.
The generalized modified weibull with parameters mu
, sigma
, nu
and tau
has density given by
c("", "")
for x>0.
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters ## The probability density function curve(dGMW(x, mu=2, sigma=0.5, nu=2, tau=1.5), from=0, to=0.8, ylim=c(0, 2), col="red", las=1, ylab="f(x)") ## The cumulative distribution and the Reliability function par(mfrow=c(1, 2)) curve(pGMW(x, mu=2, sigma=0.5, nu=2, tau=1.5), from=0, to=1.2, col="red", las=1, ylab="F(x)") curve(pGMW(x, mu=2, sigma=0.5, nu=2, tau=1.5, lower.tail=FALSE), from=0, to=1.2, col="red", las=1, ylab="R(x)") ## The quantile function p <- seq(from=0, to=0.99999, length.out=100) plot(x=qGMW(p, mu=2, sigma=0.5, nu=2, tau=1.5), y=p, xlab="Quantile", las=1, ylab="Probability") curve(pGMW(x, mu=2, sigma=0.5, nu=2, tau=1.5), from=0, add=TRUE, col="red") ## The random function hist(rGMW(n=1000, mu=2, sigma=0.5, nu=2,tau=1.5), freq=FALSE, xlab="x", main ="", las=1) curve(dGMW(x, mu=2, sigma=0.5, nu=2, tau=1.5), from=0, add=TRUE, col="red") ## The Hazard function par(mfrow=c(1,1)) curve(hGMW(x, mu=2, sigma=0.5, nu=2, tau=1.5), from=0, to=1, ylim=c(0, 16), col="red", ylab="Hazard function", las=1) par(old_par) # restore previous graphical parameters