Density, distribution function, quantile function, random generation and hazard function for the Gamma Weibull distribution with parameters mu, sigma, nu and tau.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
p: vector of probabilities.
n: number of observations.
Returns
dGammaW gives the density, pGammaW gives the distribution function, qGammaW gives the quantile function, rGammaW
generates random deviates and hGammaW gives the hazard function.
Details
The Gamma Weibull Distribution with parameters mu, sigma and nu has density given by
f(x)=Γ(ν)σμνxνσ−1exp(−μxσ),
for x>0, μ>0, σ≥0 and ν>0.
Examples
old_par <- par(mfrow = c(1,1))# save previous graphical parameters## The probability density function curve(dGammaW(x, mu =0.5, sigma =2, nu=1), from =0, to =6, col ="red", las =1, ylab ="f(x)")## The cumulative distribution and the Reliability functionpar(mfrow = c(1,2))curve(pGammaW(x, mu =0.5, sigma =2, nu=1), from =0, to =3,ylim = c(0,1), col ="red", las =1, ylab ="F(x)")curve(pGammaW(x, mu =0.5, sigma =2, nu=1, lower.tail =FALSE),from =0, to =3, ylim = c(0,1), col ="red", las =1, ylab ="R(x)")## The quantile functionp <- seq(from =0, to =0.99999, length.out =100)plot(x = qGammaW(p = p, mu =0.5, sigma =2, nu=1), y = p,xlab ="Quantile", las =1, ylab ="Probability")curve(pGammaW(x, mu =0.5, sigma =2, nu=1), from =0, add =TRUE,col ="red")## The random functionhist(rGammaW(1000, mu =0.5, sigma =2, nu=1), freq =FALSE, xlab ="x",ylim = c(0,1), las =1, main ="")curve(dGammaW(x, mu =0.5, sigma =2, nu=1), from =0, add =TRUE,col ="red", ylim = c(0,1))## The Hazard functionpar(mfrow=c(1,1))curve(hGammaW(x, mu =0.5, sigma =2, nu=1), from =0, to =2,ylim = c(0,1), col ="red", ylab ="Hazard function", las =1)par(old_par)# restore previous graphical parameters