Density, distribution function, quantile function, random generation and hazard function for the Kumaraswamy Inverse Weibull distribution with parameters mu, sigma and nu.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
p: vector of probabilities.
n: number of observations.
Returns
dKumIW gives the density, pKumIW gives the distribution function, qKumIW gives the quantile function, rKumIW
generates random deviates and hKumIW gives the hazard function.
Details
The Kumaraswamy Inverse Weibull Distribution with parameters mu, sigma and nu has density given by
f(x)=μσνx−μ−1exp−σx−μ(1−exp−σx−μ)ν−1,
for x>0, μ>0, σ>0 and ν>0.
Examples
old_par <- par(mfrow = c(1,1))# save previous graphical parameters## The probability density function par(mfrow = c(1,1))curve(dKumIW(x, mu =1.5, sigma=1.5, nu =1), from =0, to =8.5, col ="red", las =1, ylab ="f(x)")## The cumulative distribution and the Reliability functionpar(mfrow = c(1,2))curve(pKumIW(x, mu =1.5, sigma=1.5, nu =1), from =0, to =8.5, ylim = c(0,1), col ="red", las =1, ylab ="F(x)")curve(pKumIW(x, mu =1.5, sigma=1.5, nu =1, lower.tail =FALSE), from =0, to =6, ylim = c(0,1), col ="red", las =1, ylab ="R(x)")## The quantile functionp <- seq(from =0, to =0.99999, length.out =100)plot(x = qKumIW(p=p, mu =1.5, sigma=1.5, nu =10), y = p, xlab ="Quantile", las =1, ylab ="Probability")curve(pKumIW(x, mu =1.5, sigma=1.5, nu =10), from =0, add =TRUE, col ="red")## The random functionhist(rKumIW(1000, mu =1.5, sigma=1.5, nu =5), freq =FALSE, xlab ="x", las =1, ylim = c(0,1.5), main ="")curve(dKumIW(x, mu =1.5, sigma=1.5, nu =5), from =0, to =8, add =TRUE, col ="red")## The Hazard functionpar(mfrow=c(1,1))curve(hKumIW(x, mu =1.5, sigma=1.5, nu =1), from =0, to =3, ylim = c(0,0.7), col ="red", ylab ="Hazard function", las =1)par(old_par)# restore previous graphical parameters