Density, distribution function, quantile function, random generation and hazard function for the weibull geometric distribution with parameters mu, sigma and nu.
old_par <- par(mfrow = c(1,1))# save previous graphical parameters## The probability density function curve(dWG(x, mu =0.9, sigma =2, nu =0.5), from =0, to =3,ylim = c(0,1.1), col ="red", las =1, ylab ="f(x)")## The cumulative distribution and the Reliability functionpar(mfrow = c(1,2))curve(pWG(x, mu =0.9, sigma =2, nu =0.5), from =0, to =3,ylim = c(0,1), col ="red", las =1, ylab ="F(x)")curve(pWG(x, mu =0.9, sigma =2, nu =0.5, lower.tail =FALSE),from =0, to =3, ylim = c(0,1), col ="red", las =1, ylab ="R(x)")## The quantile functionp <- seq(from =0, to =0.99999, length.out =100)plot(x = qWG(p = p, mu =0.9, sigma =2, nu =0.5), y = p,xlab ="Quantile", las =1, ylab ="Probability")curve(pWG(x,mu =0.9, sigma =2, nu =0.5), from =0, add =TRUE,col ="red")## The random functionhist(rWG(1000, mu =0.9, sigma =2, nu =0.5), freq =FALSE, xlab ="x",ylim = c(0,1.8), las =1, main ="")curve(dWG(x, mu =0.9, sigma =2, nu =0.5), from =0, add =TRUE,col ="red", ylim = c(0,1.8))## The Hazard function(par(mfrow=c(1,1))curve(hWG(x, mu =0.9, sigma =2, nu =0.5), from =0, to =8,ylim = c(0,12), col ="red", ylab ="Hazard function", las =1)par(old_par)# restore previous graphical parameters