Calculate the Gradiant of Jaeckel's Dispersion Function
Calculate the Gradiant of Jaeckel's Dispersion Function
grad(x, y, beta, scores)
Arguments
x: n by p design matrix
y: n by 1 response vector
beta: p by 1 vector of regression coefficients
scores: an object of class scores
Returns
The gradiant evaluated at beta.
References
Hettmansperger, T.P. and McKean J.W. (2011), Robust Nonparametric Statistical Methods, 2nd ed., New York: Chapman-Hall.
Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the dispersion of residuals. Annals of Mathematical Statistics, 43, 1449 - 1458.
Jureckova, J. (1971). Nonparametric estimate of regression coefficients. Annals of Mathematical Statistics, 42, 1328 - 1338.
Author(s)
John Kloke
See Also
disp
Examples
## The function is currently defined asfunction(x, y, beta, scores){ x <- as.matrix(x) e <- y - x %*% beta
r <- rank(e, ties.method ="first")/(length(e)+1)-t(x)%*% scores@phi(r)}