compute lp distances
return lp ditances of selected test observations.
compute_lp(object, feature.new, feature, p)
object
: A forestry
object.feature.new
: A data frame of testing predictors.feature
: A string denoting the dimension for computing lp distances.p
: A positive real number determining the norm p-norm used.A vector lp distances.
# Set seed for reproductivity set.seed(292313) # Use Iris Data test_idx <- sample(nrow(iris), 11) x_train <- iris[-test_idx, -1] y_train <- iris[-test_idx, 1] x_test <- iris[test_idx, -1] rf <- forestry(x = x_train, y = y_train) predict(rf, x_test) # Compute the l2 distances in the "Petal.Length" dimension distances_2 <- compute_lp(object = rf, feature.new = x_test, feature = "Petal.Length", p = 2)
Useful links