estimate_3pl function

Estimation of the 3PL model

Estimation of the 3PL model

Estimate the 3PL model using the joint or marginal maximum likelihood estimation methods

model_3pl_eap scores response vectors using the EAP method

model_3pl_map scores response vectors using the MAP method

model_3pl_jmle estimates the item and ability parameters using the joint maximum likelihood estimation (JMLE) method

model_3pl_mmle estimates the item parameters using the marginal maximum likelihood estimation (MMLE) method

model_3pl_eap(u, a, b, c, D = 1.702, priors = c(0, 1), bounds_t = c(-4, 4)) model_3pl_map(u, a, b, c, D = 1.702, priors = c(0, 1), bounds_t = c(-4, 4), iter = 30, conv = 0.001) model_3pl_dv_Pt(t, a, b, c, D) model_3pl_dv_Pa(t, a, b, c, D) model_3pl_dv_Pb(t, a, b, c, D) model_3pl_dv_Pc(t, a, b, c, D) model_3pl_dv_jmle(pdv_fn, u, t, a, b, c, D) model_3pl_jmle(u, t = NA, a = NA, b = NA, c = NA, D = 1.702, iter = 100, conv = 0.001, nr_iter = 10, scale = c(0, 1), bounds_t = c(-4, 4), bounds_a = c(0.01, 2.5), bounds_b = c(-4, 4), bounds_c = c(0, 0.4), priors = list(t = c(0, 1)), decay = 1, verbose = FALSE, true_params = NULL) model_3pl_dv_mmle(pdv_fn, u, quad, a, b, c, D) model_3pl_mmle(u, t = NA, a = NA, b = NA, c = NA, D = 1.702, iter = 100, conv = 0.001, nr_iter = 10, bounds_t = c(-4, 4), bounds_a = c(0.01, 2.5), bounds_b = c(-4, 4), bounds_c = c(0, 0.4), priors = list(t = c(0, 1)), decay = 1, quad = "11", score_fn = c("eap", "map"), verbose = FALSE, true_params = NULL) model_3pl_fitplot(u, t, a, b, c, D = 1.702, index = NULL, intervals = seq(-3, 3, 0.5))

Arguments

  • u: observed response matrix, 2d matrix
  • a: discrimination parameters, 1d vector (fixed value) or NA (freely estimate)
  • b: difficulty parameters, 1d vector (fixed value) or NA (freely estimate)
  • c: pseudo-guessing parameters, 1d vector (fixed value) or NA (freely estimate)
  • D: the scaling constant, 1.702 by default
  • priors: prior distributions, a list
  • bounds_t: the bounds of ability parameters
  • iter: the maximum iterations, default=100
  • conv: the convergence criterion
  • t: ability parameters, 1d vector (fixed value) or NA (freely estimate)
  • pdv_fn: the function to compute derivatives of P w.r.t the estimating parameters
  • nr_iter: the maximum newton-raphson iterations, default=10
  • scale: the mean and SD of the theta scale, default=c(0,1) in JMLE
  • bounds_a: the bounds of discrimination parameters
  • bounds_b: the bounds of difficulty parameters
  • bounds_c: the bounds of guessing parameters
  • decay: decay rate, default=1
  • verbose: TRUE to print details for debugging
  • true_params: a list of true parameters for evaluating the parameter recovery
  • quad: the number of quadrature points
  • score_fn: the scoring function: 'eap' or 'map'
  • index: the indices of items being plotted
  • intervals: intervals on the x-axis

Returns

model_3pl_eap returns theta estimates and standard errors in a list

model_3pl_map returns theta estimates in a list

model_3pl_jmle returns estimated t, a, b, c parameters in a list

model_3pl_mmle returns estimated t, a, b, c parameters in a list

model_3pl_fitplot returns a ggplot object

Examples

with(model_3pl_gendata(10, 40), cbind(true=t, est=model_3pl_eap(u, a, b, c)$t)) with(model_3pl_gendata(10, 40), cbind(true=t, est=model_3pl_map(u, a, b, c)$t)) # generate data x <- model_3pl_gendata(2000, 40) # free estimation, 40 iterations y <- model_3pl_jmle(x$u, true_params=x, iter=40, verbose=TRUE) # fix c-parameters, 40 iterations y <- model_3pl_jmle(x$u, c=0, true_params=x, iter=40) # generate data x <- model_3pl_gendata(2000, 40) # free estimation, 40 iterations y <- model_3pl_mmle(x$u, true_params=x, iter=40, verbose=TRUE) with(model_3pl_gendata(1000, 20), model_3pl_fitplot(u, t, a, b, c, index=c(1, 3, 5)))
  • Maintainer: Xiao Luo
  • License: GPL (>= 3)
  • Last published: 2019-10-23