helpers function

Helper Functions

Helper Functions

model_polytomous_3dindex creates indices extracting 3D stats

model_polytomous_3dresponse converts responses from 2D to 3D

hermite_gauss stores pre-computed hermite gaussian quadratures points and weights

nr_iteration updates the parameters using the Newton-Raphson method

model_polytomous_3dindex(u) model_polytomous_3dresponse(u) hermite_gauss(degree = c("20", "11", "7")) nr_iteration(param, free, dv, h_max, lr, bound) estimate_3pl_debug(tracking, k) estimate_3pl_eval(true_params, t, a, b, c, t_free, a_free, b_free, c_free) estimate_gpcm_debug(tracking, k) estimate_gpcm_eval(true_params, n_c, t, a, b, d, t_free, a_free, b_free, d_free) estimate_grm_debug(tracking, k) estimate_grm_eval(true_params, n_c, t, a, b, t_free, a_free, b_free)

Arguments

  • u: the observed response, 2d matrix, values start from 0
  • degree: the degree of hermite-gauss quadrature: '20', '11', '7'
  • param: the parameter being estimated
  • free: TRUE to free parameters, otherwise fix parameters
  • dv: the first and second derivatives
  • h_max: the maximum value of h
  • lr: the learning rate
  • bound: the lower and upper bounds of the parameter
  • tracking: estimation tracking information
  • k: the number of iterations in estimation
  • true_params: a list of true parameters
  • t: estimated ability parameters
  • a: estimated discrimination parameters
  • b: estimated difficulty parameters
  • c: estimated guessing parameters
  • t_free: TRUE to estimate ability parameters, otherwise fix
  • a_free: TRUE to estimate discrimination parameters, otherwise fix
  • b_free: TRUE to estimate difficulty parameters, otherwise fix
  • c_free: TRUE to estimate guessing parameters, otherwise fix
  • Maintainer: Xiao Luo
  • License: GPL (>= 3)
  • Last published: 2019-10-23