Helper Functions
model_polytomous_3dindex
creates indices extracting 3D stats
model_polytomous_3dresponse
converts responses from 2D to 3D
hermite_gauss
stores pre-computed hermite gaussian quadratures points and weights
nr_iteration
updates the parameters using the Newton-Raphson method
model_polytomous_3dindex(u) model_polytomous_3dresponse(u) hermite_gauss(degree = c("20", "11", "7")) nr_iteration(param, free, dv, h_max, lr, bound) estimate_3pl_debug(tracking, k) estimate_3pl_eval(true_params, t, a, b, c, t_free, a_free, b_free, c_free) estimate_gpcm_debug(tracking, k) estimate_gpcm_eval(true_params, n_c, t, a, b, d, t_free, a_free, b_free, d_free) estimate_grm_debug(tracking, k) estimate_grm_eval(true_params, n_c, t, a, b, t_free, a_free, b_free)
u
: the observed response, 2d matrix, values start from 0degree
: the degree of hermite-gauss quadrature: '20', '11', '7'param
: the parameter being estimatedfree
: TRUE to free parameters, otherwise fix parametersdv
: the first and second derivativesh_max
: the maximum value of hlr
: the learning ratebound
: the lower and upper bounds of the parametertracking
: estimation tracking informationk
: the number of iterations in estimationtrue_params
: a list of true parameterst
: estimated ability parametersa
: estimated discrimination parametersb
: estimated difficulty parametersc
: estimated guessing parameterst_free
: TRUE to estimate ability parameters, otherwise fixa_free
: TRUE to estimate discrimination parameters, otherwise fixb_free
: TRUE to estimate difficulty parameters, otherwise fixc_free
: TRUE to estimate guessing parameters, otherwise fix