Common computations and operations for the 3PL model
model_3pl_prob(t, a, b, c, D =1.702)model_3pl_info(t, a, b, c, D =1.702)model_3pl_lh(u, t, a, b, c, D =1.702, log =FALSE)model_3pl_rescale(t, a, b, c, scale = c("t","b"), mean =0, sd =1)model_3pl_gendata(n_p, n_i, t =NULL, a =NULL, b =NULL, c =NULL, D =1.702, t_dist = c(0,1), a_dist = c(-0.1,0.2), b_dist = c(0,0.7), c_dist = c(5,46), t_bounds = c(-3,3), a_bounds = c(0.01,2.5), b_bounds = c(-3,3), c_bounds = c(0,0.5), missing =NULL,...)model_3pl_plot(a, b, c, D =1.702, type = c("prob","info"), total =FALSE, xaxis = seq(-4,4,0.1))model_3pl_plot_loglh(u, a, b, c, D =1.702, xaxis = seq(-4,4,0.1), verbose =FALSE)
Arguments
t: ability parameters, 1d vector
a: discrimination parameters, 1d vector
b: difficulty parameters, 1d vector
c: guessing parameters, 1d vector
D: the scaling constant, default=1.702
u: observed responses, 2d matrix
log: True to return log-likelihood
scale: the scale, 't' for theta or 'b' for b-parameters
mean: the mean of the new scale
sd: the standard deviation of the new scale
n_p: the number of people to be generated
n_i: the number of items to be generated
t_dist: parameters of the normal distribution used to generate t-parameters
a_dist: parameters of the lognormal distribution used to generate a-parameters
b_dist: parameters of the normal distribution used to generate b-parameters
c_dist: parameters of the beta distribution used to generate c-parameters
t_bounds: bounds of the ability parameters
a_bounds: bounds of the discrimination parameters
b_bounds: bounds of the difficulty parameters
c_bounds: bounds of the guessing parameters
missing: the proportion or number of missing responses
...: additional arguments
type: the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC)
total: TRUE to sum values over items
xaxis: the values of x-axis
verbose: TRUE to print rough maximum likelihood estimates
Returns
model_3pl_prob returns the resulting probabilities in a matrix
model_3pl_info returns the resulting information in a matrix
model_3pl_lh returns the resulting likelihood in a matrix
model_3pl_rescale returns t, a, b, c parameters on the new scale
model_3pl_gendata returns the generated response matrix and parameters in a list
model_3pl_plot returns a ggplot object
model_3pl_plot_loglh returns a ggplot object
Examples
with(model_3pl_gendata(10,5), model_3pl_prob(t, a, b, c))with(model_3pl_gendata(10,5), model_3pl_info(t, a, b, c))with(model_3pl_gendata(10,5), model_3pl_lh(u, t, a, b, c))model_3pl_gendata(10,5)model_3pl_gendata(10,5, a=1, c=0, missing=.1)with(model_3pl_gendata(10,5), model_3pl_plot(a, b, c, type="prob"))with(model_3pl_gendata(10,5), model_3pl_plot(a, b, c, type="info", total=TRUE))with(model_3pl_gendata(5,50), model_3pl_plot_loglh(u, a, b, c))