model_3pl function

3-parameter-logistic model

3-parameter-logistic model

Common computations and operations for the 3PL model

model_3pl_prob(t, a, b, c, D = 1.702) model_3pl_info(t, a, b, c, D = 1.702) model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE) model_3pl_rescale(t, a, b, c, scale = c("t", "b"), mean = 0, sd = 1) model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL, D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0, 0.7), c_dist = c(5, 46), t_bounds = c(-3, 3), a_bounds = c(0.01, 2.5), b_bounds = c(-3, 3), c_bounds = c(0, 0.5), missing = NULL, ...) model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"), total = FALSE, xaxis = seq(-4, 4, 0.1)) model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1), verbose = FALSE)

Arguments

  • t: ability parameters, 1d vector
  • a: discrimination parameters, 1d vector
  • b: difficulty parameters, 1d vector
  • c: guessing parameters, 1d vector
  • D: the scaling constant, default=1.702
  • u: observed responses, 2d matrix
  • log: True to return log-likelihood
  • scale: the scale, 't' for theta or 'b' for b-parameters
  • mean: the mean of the new scale
  • sd: the standard deviation of the new scale
  • n_p: the number of people to be generated
  • n_i: the number of items to be generated
  • t_dist: parameters of the normal distribution used to generate t-parameters
  • a_dist: parameters of the lognormal distribution used to generate a-parameters
  • b_dist: parameters of the normal distribution used to generate b-parameters
  • c_dist: parameters of the beta distribution used to generate c-parameters
  • t_bounds: bounds of the ability parameters
  • a_bounds: bounds of the discrimination parameters
  • b_bounds: bounds of the difficulty parameters
  • c_bounds: bounds of the guessing parameters
  • missing: the proportion or number of missing responses
  • ...: additional arguments
  • type: the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC)
  • total: TRUE to sum values over items
  • xaxis: the values of x-axis
  • verbose: TRUE to print rough maximum likelihood estimates

Returns

model_3pl_prob returns the resulting probabilities in a matrix

model_3pl_info returns the resulting information in a matrix

model_3pl_lh returns the resulting likelihood in a matrix

model_3pl_rescale returns t, a, b, c parameters on the new scale

model_3pl_gendata returns the generated response matrix and parameters in a list

model_3pl_plot returns a ggplot object

model_3pl_plot_loglh returns a ggplot object

Examples

with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c)) with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c)) with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c)) model_3pl_gendata(10, 5) model_3pl_gendata(10, 5, a=1, c=0, missing=.1) with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob")) with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE)) with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c))
  • Maintainer: Xiao Luo
  • License: GPL (>= 3)
  • Last published: 2019-10-23