model_grm_prob(t, a, b, D =1.702, raw =FALSE)model_grm_info(t, a, b, D =1.702)model_grm_lh(u, t, a, b, D =1.702, log =FALSE)model_grm_gendata(n_p, n_i, n_c, t =NULL, a =NULL, b =NULL, D =1.702, t_dist = c(0,1), a_dist = c(-0.1,0.2), b_dist = c(0,0.8), t_bounds = c(-3,3), a_bounds = c(0.01,2.5), b_bounds = c(-3,3), missing =NULL,...)model_grm_rescale(t, a, b, scale = c("t","b"), mean =0, sd =1)model_grm_plot(a, b, D =1.702, type = c("prob","info"), item_level =FALSE, total =FALSE, xaxis = seq(-6,6,0.1), raw =FALSE)model_grm_plot_loglh(u, a, b, D =1.702, xaxis = seq(-6,6,0.1), verbose =FALSE)
Arguments
t: ability parameters, 1d vector
a: discrimination parameters, 1d vector
b: item location parameters, 2d matrix
D: the scaling constant, default=1.702
raw: TRUE to return P*
u: observed scores (starting from 0), 2d matrix
log: TRUE to return log-likelihood
n_p: the number of people to be generated
n_i: the number of items to be generated
n_c: the number of score categories
t_dist: parameters of the normal distribution used to generate t-parameters
a_dist: parameters of the lognormal distribution used to generate a-parameters
b_dist: parameters of the normal distribution used to generate b-parameters
t_bounds: the bounds of the ability parameters
a_bounds: the bounds of the discrimination parameters
b_bounds: the bounds of the difficulty parameters
missing: the proportion or number of missing responses
...: additional arguments
scale: the scale, 't' for theta or 'b' for b-parameters
mean: the mean of the new scale
sd: the standard deviation of the new scale
type: the type of plot, prob for ICC and info for IIFC
item_level: TRUE to combine categories
total: TRUE to sum values over items
xaxis: the values of x-axis
verbose: TRUE to print rough maximum likelihood values
Returns
model_grm_prob returns the resulting probabilities in a 3d array
model_grm_info returns the resulting information in a 3d array
model_grm_lh returns the resulting likelihood in a matrix
model_grm_gendata returns the generated response data and parameters in a list
model_grm_rescale returns t, a, b parameters on the new scale
model_grm_plot returns a ggplot object
model_grm_plot_loglh returns a ggplot object
Examples
with(model_grm_gendata(10,5,3), model_grm_prob(t, a, b))with(model_grm_gendata(10,5,3), model_grm_info(t, a, b))with(model_grm_gendata(10,5,3), model_grm_lh(u, t, a, b))model_grm_gendata(10,5,3)model_grm_gendata(10,5,3, missing=.1)with(model_grm_gendata(10,5,3), model_grm_plot(a, b, type='prob'))with(model_grm_gendata(10,5,3), model_grm_plot(a, b, type='info', item_level=TRUE))with(model_grm_gendata(5,50,3), model_grm_plot_loglh(u, a, b))