It is a function for computing one reduct from a discernibility matrix - it can use the greedy heuristic or a randomized (Monte Carlo) search.
FS.one.reduct.computation(discernibilityMatrix, greedy =TRUE, power =1)
Arguments
discernibilityMatrix: a "DiscernibilityMatrix" class representing the discernibility matrix of RST and FRST.
greedy: a boolean value indicating whether the greedy heuristic or a randomized search should be used in computations.
power: a numeric representing a parameter of the randomized search heuristic.
Returns
An object of a class "ReductSet".
Examples
########################################################## Example 1: Generate one reduct and## a new decision table using RST########################################################data(RoughSetData)decision.table <- RoughSetData$hiring.dt
## build the decision-relation discernibility matrixres.1<- BC.discernibility.mat.RST(decision.table)## generate all reductsreduct <- FS.one.reduct.computation(res.1)## generate new decision tablenew.decTable <- SF.applyDecTable(decision.table, reduct, control = list(indx.reduct =1))################################################################ Example 2: Generate one reduct and## a new decision table using FRST##############################################################data(RoughSetData)decision.table <- RoughSetData$hiring.dt
## build the decision-relative discernibility matrixcontrol <- list(type.relation = c("crisp"), type.aggregation = c("crisp"), t.implicator ="lukasiewicz", type.LU ="implicator.tnorm")res.2<- BC.discernibility.mat.FRST(decision.table, type.discernibility ="standard.red", control = control)## generate a single reductreduct <- FS.one.reduct.computation(res.2)## generate new decision tablenew.decTable <- SF.applyDecTable(decision.table, reduct, control = list(indx.reduct =1))
References
Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, and Jakub Wroblewski, "Rough Set Algorithms in Classification Problem", Chapter 2 In: L. Polkowski, S. Tsumoto and T.Y. Lin (eds.): Rough Set Methods and Applications Physica-Verlag, Heidelberg, New York, p. 49 - 88 ( 2000).
See Also
BC.discernibility.mat.RST and BC.discernibility.mat.FRST.