FS.one.reduct.computation function

Computing one reduct from a discernibility matrix

Computing one reduct from a discernibility matrix

It is a function for computing one reduct from a discernibility matrix - it can use the greedy heuristic or a randomized (Monte Carlo) search.

FS.one.reduct.computation(discernibilityMatrix, greedy = TRUE, power = 1)

Arguments

  • discernibilityMatrix: a "DiscernibilityMatrix" class representing the discernibility matrix of RST and FRST.
  • greedy: a boolean value indicating whether the greedy heuristic or a randomized search should be used in computations.
  • power: a numeric representing a parameter of the randomized search heuristic.

Returns

An object of a class "ReductSet".

Examples

######################################################## ## Example 1: Generate one reduct and ## a new decision table using RST ######################################################## data(RoughSetData) decision.table <- RoughSetData$hiring.dt ## build the decision-relation discernibility matrix res.1 <- BC.discernibility.mat.RST(decision.table) ## generate all reducts reduct <- FS.one.reduct.computation(res.1) ## generate new decision table new.decTable <- SF.applyDecTable(decision.table, reduct, control = list(indx.reduct = 1)) ############################################################## ## Example 2: Generate one reduct and ## a new decision table using FRST ############################################################## data(RoughSetData) decision.table <- RoughSetData$hiring.dt ## build the decision-relative discernibility matrix control <- list(type.relation = c("crisp"), type.aggregation = c("crisp"), t.implicator = "lukasiewicz", type.LU = "implicator.tnorm") res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red", control = control) ## generate a single reduct reduct <- FS.one.reduct.computation(res.2) ## generate new decision table new.decTable <- SF.applyDecTable(decision.table, reduct, control = list(indx.reduct = 1))

References

Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, and Jakub Wroblewski, "Rough Set Algorithms in Classification Problem", Chapter 2 In: L. Polkowski, S. Tsumoto and T.Y. Lin (eds.): Rough Set Methods and Applications Physica-Verlag, Heidelberg, New York, p. 49 - 88 ( 2000).

See Also

BC.discernibility.mat.RST and BC.discernibility.mat.FRST.

Author(s)

Andrzej Janusz