Wrapper function of missing value completion
It is a wrapper function for missing value completion.
MV.missingValueCompletion(decision.table, type.method = "deletionCases")
decision.table
: a "DecisionTable"
class representing a decision table. See SF.asDecisionTable
. Note: missing values are recognized as NA.
type.method
: one of the following methods:
"deletionCases"
: See MV.deletionCases
."mostCommonValResConcept"
: See MV.mostCommonValResConcept
."mostCommonVal"
: See MV.mostCommonVal
."globalClosestFit"
: See MV.globalClosestFit
."conceptClosestFit"
: See MV.conceptClosestFit
.A class "MissingValue"
which contains
val.NA
: a matrix containing indices of missing value (i.e., unknown values) positions and their values.type.method
: a string showing the type of used method. In this case, it is "deleteCases"
.############################################# ## Example : ############################################# dt.ex1 <- data.frame( c(100.2, 102.6, NA, 99.6, 99.8, 96.4, 96.6, NA), c(NA, "yes", "no", "yes", NA, "yes", "no", "yes"), c("no", "yes", "no", "yes", "yes", "no", "yes", NA), c("yes", "yes", "no", "yes", "no", "no", "no", "yes")) colnames(dt.ex1) <- c("Temp", "Headache", "Nausea", "Flu") decision.table <- SF.asDecisionTable(dataset = dt.ex1, decision.attr = 4, indx.nominal = c(2:4)) indx = MV.missingValueCompletion(decision.table, type.method = "deletionCases") ## generate new decision table new.decTable <- SF.applyDecTable(decision.table, indx)
J. Grzymala-Busse and W. Grzymala-Busse, "Handling Missing Attribute Values," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York : Springer, 2010, pp. 33-51
MV.deletionCases
, MV.mostCommonValResConcept
, MV.mostCommonVal
, MV.globalClosestFit
, and MV.conceptClosestFit
.
Lala Septem Riza