MV.missingValueCompletion function

Wrapper function of missing value completion

Wrapper function of missing value completion

It is a wrapper function for missing value completion.

MV.missingValueCompletion(decision.table, type.method = "deletionCases")

Arguments

  • decision.table: a "DecisionTable" class representing a decision table. See SF.asDecisionTable. Note: missing values are recognized as NA.

  • type.method: one of the following methods:

    • "deletionCases": See MV.deletionCases.
    • "mostCommonValResConcept": See MV.mostCommonValResConcept.
    • "mostCommonVal": See MV.mostCommonVal.
    • "globalClosestFit": See MV.globalClosestFit.
    • "conceptClosestFit": See MV.conceptClosestFit.

Returns

A class "MissingValue" which contains

  • val.NA: a matrix containing indices of missing value (i.e., unknown values) positions and their values.
  • type.method: a string showing the type of used method. In this case, it is "deleteCases".

Examples

############################################# ## Example : ############################################# dt.ex1 <- data.frame( c(100.2, 102.6, NA, 99.6, 99.8, 96.4, 96.6, NA), c(NA, "yes", "no", "yes", NA, "yes", "no", "yes"), c("no", "yes", "no", "yes", "yes", "no", "yes", NA), c("yes", "yes", "no", "yes", "no", "no", "no", "yes")) colnames(dt.ex1) <- c("Temp", "Headache", "Nausea", "Flu") decision.table <- SF.asDecisionTable(dataset = dt.ex1, decision.attr = 4, indx.nominal = c(2:4)) indx = MV.missingValueCompletion(decision.table, type.method = "deletionCases") ## generate new decision table new.decTable <- SF.applyDecTable(decision.table, indx)

References

J. Grzymala-Busse and W. Grzymala-Busse, "Handling Missing Attribute Values," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York : Springer, 2010, pp. 33-51

See Also

MV.deletionCases, MV.mostCommonValResConcept, MV.mostCommonVal, MV.globalClosestFit, and MV.conceptClosestFit.

Author(s)

Lala Septem Riza