predict.RuleSetFRST function

The predicting function for rule induction methods based on FRST

The predicting function for rule induction methods based on FRST

It is a function used to obtain predicted values after obtaining rules by using rule induction methods. We have provided the functions RI.GFRS.FRST and RI.hybridFS.FRST to generate rules based on FRST.

## S3 method for class 'RuleSetFRST' predict(object, newdata, ...)

Arguments

  • object: a "RuleSetFRST" class resulted by RI.GFRS.FRST and RI.hybridFS.FRST.
  • newdata: a "DecisionTable" class containing a data frame or matrix (m x n) of data for the prediction process, where m is the number of instances and n is the number of input attributes. It should be noted that this data must have colnames on each attributes.
  • ...: the other parameters.

Returns

The predicted values.

Examples

############################################## ## Example: Classification Task ############################################## data(RoughSetData) decision.table <- RoughSetData$pima7.dt ## using RI.hybrid.FRST for generating rules control <- list(type.aggregation = c("t.tnorm", "lukasiewicz"), type.relation = c("tolerance", "eq.1"), t.implicator = "lukasiewicz") rules.hybrid <- RI.hybridFS.FRST(decision.table, control) ## in this case, we are using the same data set as the training data res.1 <- predict(rules.hybrid, decision.table[, -ncol(decision.table)]) ## using RI.GFRS.FRST for generating rules control <- list(alpha.precision = 0.01, type.aggregation = c("t.tnorm", "lukasiewicz"), type.relation = c("tolerance", "eq.3"), t.implicator = "lukasiewicz") rules.gfrs <- RI.GFRS.FRST(decision.table, control) ## in this case, we are using the same data set as the training data res.2 <- predict(rules.gfrs, decision.table[, -ncol(decision.table)]) ############################################## ## Example: Regression Task ############################################## data(RoughSetData) decision.table <- RoughSetData$housing7.dt ## using RI.hybrid.FRST for generating rules control <- list(type.aggregation = c("t.tnorm", "lukasiewicz"), type.relation = c("tolerance", "eq.1"), t.implicator = "lukasiewicz") rules <- RI.hybridFS.FRST(decision.table, control) ## in this case, we are using the same data set as the training data res.1 <- predict(rules, decision.table[, -ncol(decision.table)])

See Also

RI.indiscernibilityBasedRules.RST, RI.GFRS.FRST and RI.hybridFS.FRST

Author(s)

Lala Septem Riza