The predicting function for rule induction methods based on FRST
The predicting function for rule induction methods based on FRST
It is a function used to obtain predicted values after obtaining rules by using rule induction methods. We have provided the functions RI.GFRS.FRST and RI.hybridFS.FRST to generate rules based on FRST.
## S3 method for class 'RuleSetFRST'predict(object, newdata,...)
Arguments
object: a "RuleSetFRST" class resulted by RI.GFRS.FRST and RI.hybridFS.FRST.
newdata: a "DecisionTable" class containing a data frame or matrix (m x n) of data for the prediction process, where m is the number of instances and n is the number of input attributes. It should be noted that this data must have colnames on each attributes.
...: the other parameters.
Returns
The predicted values.
Examples
################################################ Example: Classification Task##############################################data(RoughSetData)decision.table <- RoughSetData$pima7.dt
## using RI.hybrid.FRST for generating rulescontrol <- list(type.aggregation = c("t.tnorm","lukasiewicz"), type.relation = c("tolerance","eq.1"), t.implicator ="lukasiewicz")rules.hybrid <- RI.hybridFS.FRST(decision.table, control)## in this case, we are using the same data set as the training datares.1<- predict(rules.hybrid, decision.table[,-ncol(decision.table)])## using RI.GFRS.FRST for generating rulescontrol <- list(alpha.precision =0.01, type.aggregation = c("t.tnorm","lukasiewicz"), type.relation = c("tolerance","eq.3"), t.implicator ="lukasiewicz")rules.gfrs <- RI.GFRS.FRST(decision.table, control)## in this case, we are using the same data set as the training datares.2<- predict(rules.gfrs, decision.table[,-ncol(decision.table)])################################################ Example: Regression Task##############################################data(RoughSetData)decision.table <- RoughSetData$housing7.dt
## using RI.hybrid.FRST for generating rulescontrol <- list(type.aggregation = c("t.tnorm","lukasiewicz"), type.relation = c("tolerance","eq.1"), t.implicator ="lukasiewicz")rules <- RI.hybridFS.FRST(decision.table, control)## in this case, we are using the same data set as the training datares.1<- predict(rules, decision.table[,-ncol(decision.table)])
See Also
RI.indiscernibilityBasedRules.RST, RI.GFRS.FRST and RI.hybridFS.FRST