RprobitB_parameter function

Define probit model parameter

Define probit model parameter

This function creates an object of class RprobitB_parameter, which contains the parameters of a probit model. If sample = TRUE, missing parameters are sampled. All parameters are checked against the values of P_f, P_r, J, and N.

RprobitB_parameter( P_f, P_r, J, N, ordered = FALSE, alpha = NULL, C = NULL, s = NULL, b = NULL, Omega = NULL, Sigma = NULL, Sigma_full = NULL, beta = NULL, z = NULL, d = NULL, seed = NULL, sample = TRUE )

Arguments

  • P_f: The number of covariates connected to a fixed coefficient (can be 0).
  • P_r: The number of covariates connected to a random coefficient (can be 0).
  • J: The number (greater or equal 2) of choice alternatives.
  • N: The number (greater or equal 1) of decision makers.
  • ordered: A boolean, FALSE per default. If TRUE, the choice set alternatives is assumed to be ordered from worst to best.
  • alpha: The fixed coefficient vector of length P_f. Set to NA if P_f = 0.
  • C: The number (greater or equal 1) of latent classes of decision makers. Set to NA if P_r = 0. Otherwise, C = 1 per default.
  • s: The vector of class weights of length C. Set to NA if P_r = 0. For identifiability, the vector must be non-ascending.
  • b: The matrix of class means as columns of dimension P_r x C. Set to NA if P_r = 0.
  • Omega: The matrix of class covariance matrices as columns of dimension P_r*P_r x C. Set to NA if P_r = 0.
  • Sigma: The differenced error term covariance matrix of dimension J-1 x J-1 with respect to alternative J. In case of ordered = TRUE, a numeric, the single error term variance.
  • Sigma_full: The error term covariance matrix of dimension J x J. Internally, Sigma_full gets differenced with respect to alternative J, so it becomes an identified covariance matrix of dimension J-1 x J-1. Sigma_full is ignored if Sigma is specified or ordered = TRUE.
  • beta: The matrix of the decision-maker specific coefficient vectors of dimension P_r x N. Set to NA if P_r = 0.
  • z: The vector of the allocation variables of length N. Set to NA if P_r = 0.
  • d: The numeric vector of the logarithmic increases of the utility thresholds in the ordered probit case (ordered = TRUE) of length J-2.
  • seed: Set a seed for the sampling of missing parameters.
  • sample: A boolean, if TRUE (default) missing parameters get sampled.

Returns

An object of class RprobitB_parameter, i.e. a named list with the model parameters alpha, C, s, b, Omega, Sigma, Sigma_full, beta, and z.

Examples

RprobitB_parameter(P_f = 1, P_r = 2, J = 3, N = 10)