check_prior function

Check prior parameters

Check prior parameters

This function checks the compatibility of submitted parameters for the prior distributions and sets missing values to default values.

check_prior( P_f, P_r, J, ordered = FALSE, eta = numeric(P_f), Psi = diag(P_f), delta = 1, xi = numeric(P_r), D = diag(P_r), nu = P_r + 2, Theta = diag(P_r), kappa = if (ordered) 4 else (J + 1), E = if (ordered) diag(1) else diag(J - 1), zeta = numeric(J - 2), Z = diag(J - 2) )

Arguments

  • P_f: The number of covariates connected to a fixed coefficient (can be 0).
  • P_r: The number of covariates connected to a random coefficient (can be 0).
  • J: The number (greater or equal 2) of choice alternatives.
  • ordered: A boolean, FALSE per default. If TRUE, the choice set alternatives is assumed to be ordered from worst to best.
  • eta: The mean vector of length P_f of the normal prior for alpha. Per default, eta = numeric(P_f).
  • Psi: The covariance matrix of dimension P_f x P_f of the normal prior for alpha. Per default, Psi = diag(P_f).
  • delta: A numeric for the concentration parameter vector rep(delta,C) of the Dirichlet prior for s. Per default, delta = 1. In case of Dirichlet process-based updates of the latent classes, delta = 0.1 per default.
  • xi: The mean vector of length P_r of the normal prior for each b_c. Per default, xi = numeric(P_r).
  • D: The covariance matrix of dimension P_r x P_r of the normal prior for each b_c. Per default, D = diag(P_r).
  • nu: The degrees of freedom (a natural number greater than P_r) of the Inverse Wishart prior for each Omega_c. Per default, nu = P_r + 2.
  • Theta: The scale matrix of dimension P_r x P_r of the Inverse Wishart prior for each Omega_c. Per default, Theta = diag(P_r).
  • kappa: The degrees of freedom (a natural number greater than J-1) of the Inverse Wishart prior for Sigma. Per default, kappa = J + 1.
  • E: The scale matrix of dimension J-1 x J-1 of the Inverse Wishart prior for Sigma. Per default, E = diag(J - 1).
  • zeta: The mean vector of length J - 2 of the normal prior for the logarithmic increments d of the utility thresholds in the ordered probit model. Per default, zeta = numeric(J - 2).
  • Z: The covariance matrix of dimension J-2 x J-2 of the normal prior for the logarithmic increments d of the utility thresholds in the ordered probit model. Per default, Z = diag(J - 2).

Returns

An object of class RprobitB_prior, which is a list containing all prior parameters. Parameters that are not relevant for the model configuration are set to NA.

Details

A priori, we assume that the model parameters follow these distributions:

  • αN(η,Ψ)\alpha \sim N(\eta, \Psi)
  • sDir(δ)s \sim Dir(\delta)
  • bcN(ξ,D)b_c \sim N(\xi, D) for all classes cc
  • ΩcIW(ν,Θ)\Omega_c \sim IW(\nu,\Theta) for all classes cc
  • ΣIW(κ,E)\Sigma \sim IW(\kappa,E)
  • dN(ζ,Z)d \sim N(\zeta, Z)

where NN denotes the normal, DirDir the Dirichlet, and IWIW

the Inverted Wishart distribution.

Examples

check_prior(P_f = 1, P_r = 2, J = 3, ordered = TRUE)