beta: The matrix of the decision-maker specific coefficient vectors of dimension P_r x N. Set to NA if P_r = 0.
z: The vector of the allocation variables of length N. Set to NA if P_r = 0.
b: The matrix of class means as columns of dimension P_r x C. Set to NA if P_r = 0.
Omega: The matrix of class covariance matrices as columns of dimension P_r*P_r x C. Set to NA if P_r = 0.
delta: A numeric for the concentration parameter vector rep(delta,C) of the Dirichlet prior for s. Per default, delta = 1. In case of Dirichlet process-based updates of the latent classes, delta = 0.1 per default.
xi: The mean vector of length P_r of the normal prior for each b_c. Per default, xi = numeric(P_r).
D: The covariance matrix of dimension P_r x P_r of the normal prior for each b_c. Per default, D = diag(P_r).
nu: The degrees of freedom (a natural number greater than P_r) of the Inverse Wishart prior for each Omega_c. Per default, nu = P_r + 2.
Theta: The scale matrix of dimension P_r x P_r of the Inverse Wishart prior for each Omega_c. Per default, Theta = diag(P_r).
s_desc: If TRUE, sort the classes in descending class weight.
Returns
A list of updated values for z, b, Omega, s, and C.