wnorm function

Calculate Weighted Norm of series

Calculate Weighted Norm of series

Function calculates the W-norm for input objects or for objects stored in input ssa obect.

## S3 method for class '1d.ssa' wnorm(x, ...) ## S3 method for class 'nd.ssa' wnorm(x, ...) ## S3 method for class 'toeplitz.ssa' wnorm(x, ...) ## S3 method for class 'mssa' wnorm(x, ...) ## Default S3 method: wnorm(x, L = (N + 1) %/% 2, ...) ## S3 method for class 'complex' wnorm(x, L = (N + 1) %/% 2, ...)

Arguments

  • x: the input object. This might be ssa object for ssa

    method, or just a series.

  • L: window length.

  • ...: arguments to be passed to methods.

Details

L-weighted norm of series is Frobenius norm of its L-trajectory matrix. So, if x is vector (series), the result of wnorm(x, L) is equal to sqrt(sum(hankel(x, L)^2), but in fact is calculated much more efficiently. For 1d SSA and Toeplitz SSA wnorm(x) calculates weighted norm for stored original input series and stored window length.

L-weighted norm of 2d array is Frobenius norm of its L[1] * L[2]-trajectory hankel-block-hankel matrix. For 2d SSA this method calculates weighted norm for stored original input array and stored 2d-window lengths.

References

Golyandina, N., Nekrutkin, V. and Zhigljavsky, A. (2001): Analysis of Time Series Structure: SSA and related techniques. Chapman and Hall/CRC. ISBN 1584881941

See Also

ssa-input, hankel, wcor

Examples

wnorm(co2, 20) # Construct ssa-object for 'co2' with default parameters but don't decompose ss <- ssa(co2, force.decompose = FALSE) wnorm(ss) # Artificial image for 2D SSA mx <- outer(1:50, 1:50, function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) + rnorm(50^2, sd = 0.1) # Construct ssa-object for 'mx' with default parameters but don't decompose s <- ssa(mx, kind = "2d-ssa", force.decompose = FALSE) wnorm(s)
  • Maintainer: Anton Korobeynikov
  • License: GPL (>= 2)
  • Last published: 2024-09-05