udcauchy function

UNU.RAN object for Cauchy distribution

UNU.RAN object for Cauchy distribution

Create UNU.RAN object for a Cauchy distribution with location parameter location and scale parameter scale.

[Distribution] -- Cauchy.

udcauchy(location=0, scale=1, lb=-Inf, ub=Inf)

Arguments

  • location: location parameter.
  • scale: (strictly positive) scale parameter.
  • lb: lower bound of (truncated) distribution.
  • ub: upper bound of (truncated) distribution.

Details

The Cauchy distribution with location ll and scale ss has density

f(x)=1πs(1+(xls)2)1f(x)=1/(pis(1+((xl)/s)2)) f(x) = \frac{1}{\pi s}\left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}f(x) = 1 / (pi s (1 + ((x-l)/s)^2))

for all xx.

The domain of the distribution can be truncated to the interval (lb,ub).

Returns

An object of class "unuran.cont".

See Also

unuran.cont.

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 16, p. 299.

Author(s)

Josef Leydold and Wolfgang H"ormann unuran@statmath.wu.ac.at .

Examples

## Create distribution object for Cauchy distribution distr <- udcauchy() ## Generate generator object; use method PINV (inversion) gen <- pinvd.new(distr) ## Draw a sample of size 100 x <- ur(gen,100)
  • Maintainer: Josef Leydold
  • License: GPL (>= 2)
  • Last published: 2025-04-07