udhyperbolic function

UNU.RAN object for Hyperbolic distribution

UNU.RAN object for Hyperbolic distribution

Create UNU.RAN object for a Hyperbolic distribution with location parameter mu, tail (shape) parameter alpha, asymmetry (shape) parameter beta, and scale parameter delta.

[Distribution] -- Hyperbolic.

udhyperbolic(alpha, beta, delta, mu, lb=-Inf, ub=Inf)

Arguments

  • alpha: tail (shape) parameter (must be strictly larger than absolute value of beta).
  • beta: asymmetry (shape) parameter.
  • delta: scale parameter (must be strictly positive).
  • mu: location parameter.
  • lb: lower bound of (truncated) distribution.
  • ub: upper bound of (truncated) distribution.

Details

The hyperbolic distribution with parameters mumu,alphaalpha,betabeta, and deltadelta

has density proportional to

f(x)=exp(α(δ2+(xμ)2)+β(xμ))f(x)=exp(alphasqrt(delta2+(xmu)2)+beta(xmu)) f(x) = \exp( -\alpha \sqrt(\delta^2 + (x - \mu)^2) + \beta*(x-\mu) )f(x) = exp( -alpha * sqrt(delta^2 + (x - mu)^2) + beta*(x-mu) )

where alpha>betaalpha > |beta| and delta>0delta>0.

The domain of the distribution can be truncated to the interval (lb,ub).

Returns

An object of class "unuran.cont".

See Also

unuran.cont.

Author(s)

Josef Leydold and Wolfgang H"ormann unuran@statmath.wu.ac.at .

Examples

## Create distribution object for hyperbolic distribution distr <- udhyperbolic(alpha=3,beta=2,delta=1,mu=0) ## Generate generator object; use method PINV (inversion) gen <- pinvd.new(distr) ## Draw a sample of size 100 x <- ur(gen,100)
  • Maintainer: Josef Leydold
  • License: GPL (>= 2)
  • Last published: 2025-04-07