udig function

UNU.RAN object for Inverse Gaussian distribution

UNU.RAN object for Inverse Gaussian distribution

Create UNU.RAN object for a Inverse Gaussian (Wald) distribution with mean mu and shape parameter lambda.

[Distribution] -- Inverse Gaussian (Wald).

udig(mu, lambda, lb=0, ub=Inf)

Arguments

  • mu: mean (strictly positive).
  • lambda: shape parameter (strictly positive).
  • lb: lower bound of (truncated) distribution.
  • ub: upper bound of (truncated) distribution.

Details

The inverse Gaussian distribution with mean mumu and shape parameter lambdalambda

has density

f(x)=λ2πx3exp(λ(xμ)22μ2x)f(x)=sqrt(lambda/(2pix3))exp((lambda(xmu)2)/(2mu2x)) f(x) =\sqrt{\frac{\lambda}{2 \pi x^3} }\exp( -\frac{\lambda (x-\mu)^2}{2\mu^2 x} )f(x) = sqrt(lambda / (2*pi*x^3)) * exp( -(lambda*(x-mu)^2) / (2*mu^2*x) )

where mu>0mu>0 and lambda>0lambda>0.

The domain of the distribution can be truncated to the interval (lb,ub).

Returns

An object of class "unuran.cont".

See Also

unuran.cont.

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 15, p. 259.

Author(s)

Josef Leydold and Wolfgang H"ormann unuran@statmath.wu.ac.at .

Examples

## Create distribution object for inverse Gaussian distribution distr <- udig(mu=3, lambda=2) ## Generate generator object; use method PINV (inversion) gen <- pinvd.new(distr) ## Draw a sample of size 100 x <- ur(gen,100)
  • Maintainer: Josef Leydold
  • License: GPL (>= 2)
  • Last published: 2025-04-07