udnorm function

UNU.RAN object for Normal distribution

UNU.RAN object for Normal distribution

Create UNU.RAN object for a Normal (Gaussian) distribution with mean equal to mean and standard deviation to sd.

[Distribution] -- Normal (Gaussian).

udnorm(mean=0, sd=1, lb=-Inf, ub=Inf)

Arguments

  • mean: mean of distribution.
  • sd: standard deviation.
  • lb: lower bound of (truncated) distribution.
  • ub: upper bound of (truncated) distribution.

Details

The normal distribution with mean mumu and standard deviation sigmasigma has density

f(x)=12πσe(xμ)2/2σ2f(x)=1/(sqrt(2pi)sigma)e((xmu)2/(2sigma2)) f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))

where mumu is the mean of the distribution and sigmasigma the standard deviation.

The domain of the distribution can be truncated to the interval (lb,ub).

Returns

An object of class "unuran.cont".

See Also

unuran.cont.

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 13, p. 80.

Author(s)

Josef Leydold and Wolfgang H"ormann unuran@statmath.wu.ac.at .

Examples

## Create distribution object for standard normal distribution distr <- udnorm() ## Generate generator object; use method PINV (inversion) gen <- pinvd.new(distr) ## Draw a sample of size 100 x <- ur(gen,100) ## Create distribution object for positive normal distribution distr <- udnorm(lb=0, ub=Inf) ## ... and draw a sample gen <- pinvd.new(distr) x <- ur(gen,100)
  • Maintainer: Josef Leydold
  • License: GPL (>= 2)
  • Last published: 2025-04-07