Create UNU.RAN object for a Variance Gamma distribution with shape parameter lambda, shape parameter alpha, asymmetry (shape) parameter beta, and location parameter mu.
[Distribution] -- Variance Gamma.
udvg(lambda, alpha, beta, mu, lb=-Inf, ub=Inf)
Arguments
lambda: shape parameter (must be strictly positive).
alpha: shape parameter (must be strictly larger than absolute value of beta).
beta: asymmetry (shape) parameter.
mu: location parameter.
lb: lower bound of (truncated) distribution.
ub: upper bound of (truncated) distribution.
Details
The variance gamma distribution with parameters lambda, alpha, beta, and mu
K(lambda)(t) is the modified Bessel function of the third kind with index lambda. Gamma(t) is the Gamma function.
Notice that alpha>∣beta∣ and lambda>0.
The domain of the distribution can be truncated to the interval (lb,ub).
Returns
An object of class "unuran.cont".
Note
For lambda<=0.5, the density has a pole at mu.
See Also
unuran.cont.
References
Eberlein, E., von Hammerstein, E. A., 2004. Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes. In Seminar on Stochastic Analysis, Random Fields and Applications IV, Progress in Probability 58, R. C. Dalang, M. Dozzi, F. Russo (Eds.), Birkhauser Verlag, p. 221--264.
Madan, D. B., Seneta, E., 1990. The variance gamma (V.G.) model for share market returns. Journal of Business, Vol. 63, p. 511--524.
Raible, S., 2000. L'evy Processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis, University of Freiburg.