udweibull function

UNU.RAN object for Weibull distribution

UNU.RAN object for Weibull distribution

Create UNU.RAN object for a Weibull (Extreme value type III) distribution with with parameters shape and scale.

[Distribution] -- Weibull (Extreme value type III).

udweibull(shape, scale=1, lb=0, ub=Inf)

Arguments

  • shape: (strictly positive) shape parameter.
  • scale: (strictly positive) scale parameter.
  • lb: lower bound of (truncated) distribution.
  • ub: upper bound of (truncated) distribution.

Details

The Weibull distribution with shape parameter aa and scale parameter bb has density given by

f(x)=(a/σ)(x/σ)a1exp((x/σ)a)f(x)=(a/b)(x/b)(a1)exp((x/b)a) f(x) = (a/\sigma) {(x/\sigma)}^{a-1} \exp (-{(x/\sigma)}^{a})f(x) = (a/b) (x/b)^(a-1) exp(- (x/b)^a)

for x0x \ge 0.

The domain of the distribution can be truncated to the interval (lb,ub).

Returns

An object of class "unuran.cont".

See Also

unuran.cont.

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 21, p. 628.

Author(s)

Josef Leydold and Wolfgang H"ormann unuran@statmath.wu.ac.at .

Examples

## Create distribution object for Weibull distribution distr <- udweibull(shape=3) ## Generate generator object; use method PINV (inversion) gen <- pinvd.new(distr) ## Draw a sample of size 100 x <- ur(gen,100)
  • Maintainer: Josef Leydold
  • License: GPL (>= 2)
  • Last published: 2025-04-07