StepThree function

Post-hoc model

Post-hoc model

An auxiliary function which generates p-value based on outcome and mediation model.

StepThree(X, M, C, time, status, X_sel_Y_s1, M_X_sel_s2)

Arguments

  • X: An n by p matrix of exposures.
  • M: An n by p matrix of mediators.
  • C: An n by p matrix of covariates. If there are no covariates, set C = NULL.
  • time: A vector of survival time of samples.
  • status: A vector of status indicator: 0=alive, 1=dead.
  • X_sel_Y_s1: Outputs from StepOne: A vector of selected X for Y.
  • M_X_sel_s2: Outputs from StepTwo: A data table with selected M, X pairs and related effect size.

Returns

A list with the following components: - p_beta_m: p-values generated from outcome model

  • p_alpha_x: p-values generated from mediation modell

  • outcome_model: coefficient estimates from outcome model

  • med_results: coefficient estimates from mediation model

Examples

data(example_dat) surv_dat <- example_dat$surv_dat res_step1 <- StepOne(X = example_dat$X, M = example_dat$M, time = surv_dat$time, status = surv_dat$status, model_option = "MCP") M_X_sel_s2 <- StepTwo(X = example_dat$X, M = example_dat$M, time = surv_dat$time, status = surv_dat$status, X_sel_Y_s1 = res_step1$X_sel_Y_s1, M_X_s1 = res_step1$M_X_s1, M_sel_Y_s1 = res_step1$M_sel_Y_s1) res_step3 <- StepThree(X = example_dat$X, M = example_dat$M, C = example_dat$C, time = surv_dat$time, status = surv_dat$status, X_sel_Y_s1 = res_step1$X_sel_Y_s1, M_X_sel_s2 = M_X_sel_s2)
  • Maintainer: Weijia Fu
  • License: GPL-3
  • Last published: 2025-03-24

Useful links