SSN20.2.1 package

Spatial Modeling on Stream Networks

copy_lsn_to_temp

Copy LSN to temporary directory

covmatrix.SSN2

Create a covariance matrix

AIC.SSN2

Compute AIC and AICc of fitted model objects

anova.SSN2

Compute analysis of variance and likelihood ratio tests of fitted mode...

augment.SSN2

Augment data with information from fitted model objects

coef.SSN2

Extract fitted model coefficients

confint.SSN2

Confidence intervals for fitted model parameters

cooks.distance.SSN2

Compute Cook's distance

create_netgeom

Create netgeom column in SSN object

deviance.SSN2

Fitted model deviance

fitted.SSN2

Extract model fitted values

formula.SSN2

Model formulae

glance.SSN2

Glance at a fitted model object

glances.SSN2

Glance at many fitted model objects

hatvalues.SSN2

Compute leverage (hat) values

influence.SSN2

Regression diagnostics

labels.SSN2

Find labels from object

logLik.SSN2

Extract log-likelihood

loocv.SSN2

Perform leave-one-out cross validation

MiddleFork04.ssn

MiddleFork04.ssn: Middle Fork 2004 stream temperature dataset

model.frame.SSN2

Extract the model frame from a fitted model object

model.matrix.SSN2

Extract the model matrix from a fitted model object

plot.SSN2

Plot fitted model diagnostics

plot.Torgegram

Plot Torgegram

predict.SSN2

Model predictions (Kriging)

print.SSN

Print SSN object

print.SSN2

Print values

pseudoR2.SSN2

Compute a pseudo r-squared

reexports

Objects exported from other packages

residuals.SSN2

Extract fitted model residuals

ssn_create_distmat

Calculate Hydrologic Distances for an SSN object

ssn_get_data

Get a data.frame from an SSN, ssn_lm, or ssn_glm object

ssn_get_netgeom

Extract netgeom column

ssn_get_stream_distmat

Get stream distance matrices from an SSN object

ssn_glm

Fitting Generalized Linear Models for Spatial Stream Networks

ssn_import_predpts

Import prediction points into an SSN, ssn_lm, or ssn_glm object

ssn_import

Import SSN object

ssn_initial

Create a covariance parameter initial object

ssn_lm

Fitting Linear Models for Spatial Stream Networks

ssn_names

Return names of data in an SSN object

ssn_params

Create covariance parameter objects.

ssn_put_data

Put an sf data.frame in an SSN object

ssn_simulate

Simulate random variables on a stream network

ssn_split_predpts

Split a prediction dataset in an SSN object

ssn_subset

Subset an SSN object

SSN_to_SSN2

Convert object from SpatialStreamNetwork class to SSN class

ssn_update_path

Update path in an SSN object

ssn_write

write an SSN object

SSN2-package

SSN2: Spatial Modeling on Stream Networks

summary.SSN

Summarize an SSN object

summary.SSN2

Summarize a fitted model object

tidy.SSN2

Tidy a fitted model object

Torgegram

Compute the empirical semivariogram

varcomp.SSN2

Variability component comparison

vcov.SSN2

Calculate variance-covariance matrix for a fitted model object

Spatial statistical modeling and prediction for data on stream networks, including models based on in-stream distance (Ver Hoef, J.M. and Peterson, E.E., (2010) <DOI:10.1198/jasa.2009.ap08248>.) Models are created using moving average constructions. Spatial linear models, including explanatory variables, can be fit with (restricted) maximum likelihood. Mapping and other graphical functions are included.

  • Maintainer: Michael Dumelle
  • License: GPL-3
  • Last published: 2024-08-28