SVEMnet3.1.4 package

Self-Validated Ensemble Models with Lasso and Relaxed Elastic Net Regression

bigexp_formula

Construct a formula for a new response using a bigexp_spec

bigexp_prepare

Prepare data to match a bigexp_spec

bigexp_terms

Create a deterministic expansion spec for wide polynomial and interact...

bigexp_train

Build a spec and prepare training data in one call

coef.svem_model

Coefficients for SVEM Models

glmnet_with_cv

Fit a glmnet Model with Repeated Cross-Validation

plot.svem_binomial

Plot Method for SVEM Binomial Models

plot.svem_model

Plot Method for SVEM Models (Gaussian / Generic)

plot.svem_significance_test

Plot SVEM significance test results for one or more responses

predict_cv

Predict from glmnet_with_cv Fits (svem_cv Objects)

predict.svem_model

Predict Method for SVEM Models (Gaussian and Binomial)

print.bigexp_spec

Print method for bigexp_spec objects

print.svem_significance_test

Print Method for SVEM Significance Test

svem_export_candidates_csv

Export SVEM candidate sets to CSV

svem_nonzero

Coefficient Nonzero Percentages (SVEM)

svem_random_table_multi

Generate a Random Prediction Table from Multiple SVEMnet Models (no re...

svem_score_random

Random-search scoring for SVEM models

svem_select_from_score_table

Select best row and diverse candidates from an SVEM score table

svem_significance_test_parallel

SVEM whole-model significance test with mixture support (parallel)

svem_wmt_multi

Whole-model tests for multiple SVEM responses (WMT wrapper)

SVEMnet-package

SVEMnet: Self-Validated Ensemble Models with Relaxed Lasso and Elastic...

SVEMnet

Fit an SVEMnet model (Self-Validated Ensemble Elastic Net)

with_bigexp_contrasts

Evaluate code with the spec's recorded contrast options

Tools for fitting self-validated ensemble models (SVEM; Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) in small-sample design-of-experiments and related workflows, using elastic net and relaxed elastic net regression via 'glmnet' (Friedman et al. (2010) <doi:10.18637/jss.v033.i01>). Fractional random-weight bootstraps with anti-correlated validation copies are used to tune penalty paths by validation-weighted AIC/BIC. Supports Gaussian and binomial responses, deterministic expansion helpers for shared factor spaces, prediction with bootstrap uncertainty, and a random-search optimizer that respects mixture constraints and combines multiple responses via desirability functions. Also includes a permutation-based whole-model test for Gaussian SVEM fits (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). Package code was drafted with assistance from generative AI tools.

  • Maintainer: Andrew T. Karl
  • License: GPL-2 | GPL-3
  • Last published: 2025-11-28