mixedSCORE function

Membership estimation algorithm called mixedSCORE

Membership estimation algorithm called mixedSCORE

mixedSCORE(A, K, verbose = F)

Arguments

  • A: n-by-n binary symmtric adjacency matrix.
  • K: number of communities.
  • verbose: whether generate message

Returns

A list containing

  • R: n-by-(K-1) ratio matrix.
  • L: Selected tunning parameter used for vertex hunting algorithm.
  • thetas: A vector of the estimated degree heterogeniety parameters
  • vertices: K-by-(K-1) K vertices of the found convex hull
  • centers: L-by-(K-1) L centers by kmeans
  • memberships: n-by-K membership matrix.
  • purity: A vector of maximum membership of each node
  • hard.cluster.labels: A vector of integers indicating hard clutering labels, by assigning the node to the cluster with max membership

Examples

library(igraphdata) library(igraph) data('karate') A = get.adjacency(karate) karate.mixed.out = mixedSCORE(A, 2) karate.mixed.out$memberships
  • Maintainer: Shengming Luo
  • License: GPL-2
  • Last published: 2019-06-14

Useful links