RunSVD function

Run singular value decomposition

Run singular value decomposition

Run partial singular value decomposition using irlba

RunSVD(object, ...) ## Default S3 method: RunSVD( object, assay = NULL, n = 50, scale.embeddings = TRUE, reduction.key = "LSI_", scale.max = NULL, verbose = TRUE, irlba.work = n * 3, tol = 1e-05, ... ) ## S3 method for class 'Assay' RunSVD( object, assay = NULL, features = NULL, n = 50, reduction.key = "LSI_", scale.max = NULL, verbose = TRUE, ... ) ## S3 method for class 'StdAssay' RunSVD( object, assay = NULL, features = NULL, n = 50, reduction.key = "LSI_", scale.max = NULL, verbose = TRUE, ... ) ## S3 method for class 'Seurat' RunSVD( object, assay = NULL, features = NULL, n = 50, reduction.key = "LSI_", reduction.name = "lsi", scale.max = NULL, verbose = TRUE, ... )

Arguments

  • object: A Seurat object
  • ...: Arguments passed to other methods
  • assay: Which assay to use. If NULL, use the default assay
  • n: Number of singular values to compute
  • scale.embeddings: Scale cell embeddings within each component to mean 0 and SD 1 (default TRUE).
  • reduction.key: Key for dimension reduction object
  • scale.max: Clipping value for cell embeddings. Default (NULL) is no clipping.
  • verbose: Print messages
  • irlba.work: work parameter for irlba. Working subspace dimension, larger values can speed convergence at the cost of more memory use.
  • tol: Tolerance (tol) parameter for irlba. Larger values speed up convergence due to greater amount of allowed error.
  • features: Which features to use. If NULL, use variable features
  • reduction.name: Name for stored dimension reduction object. Default 'svd'

Returns

Returns a Seurat object

Examples

x <- matrix(data = rnorm(100), ncol = 10) RunSVD(x) ## Not run: RunSVD(atac_small[['peaks']]) ## End(Not run) ## Not run: RunSVD(atac_small[['peaks']]) ## End(Not run) ## Not run: RunSVD(atac_small) ## End(Not run)