Run partial singular value decomposition using irlba
RunSVD(object,...)## Default S3 method:RunSVD( object, assay =NULL, n =50, scale.embeddings =TRUE, reduction.key ="LSI_", scale.max =NULL, verbose =TRUE, irlba.work = n *3, tol =1e-05,...)## S3 method for class 'Assay'RunSVD( object, assay =NULL, features =NULL, n =50, reduction.key ="LSI_", scale.max =NULL, verbose =TRUE,...)## S3 method for class 'StdAssay'RunSVD( object, assay =NULL, features =NULL, n =50, reduction.key ="LSI_", scale.max =NULL, verbose =TRUE,...)## S3 method for class 'Seurat'RunSVD( object, assay =NULL, features =NULL, n =50, reduction.key ="LSI_", reduction.name ="lsi", scale.max =NULL, verbose =TRUE,...)
Arguments
object: A Seurat object
...: Arguments passed to other methods
assay: Which assay to use. If NULL, use the default assay
n: Number of singular values to compute
scale.embeddings: Scale cell embeddings within each component to mean 0 and SD 1 (default TRUE).
reduction.key: Key for dimension reduction object
scale.max: Clipping value for cell embeddings. Default (NULL) is no clipping.
verbose: Print messages
irlba.work: work parameter for irlba. Working subspace dimension, larger values can speed convergence at the cost of more memory use.
tol: Tolerance (tol) parameter for irlba. Larger values speed up convergence due to greater amount of allowed error.
features: Which features to use. If NULL, use variable features
reduction.name: Name for stored dimension reduction object. Default 'svd'
Returns
Returns a Seurat object
Examples
x <- matrix(data = rnorm(100), ncol =10)RunSVD(x)## Not run:RunSVD(atac_small[['peaks']])## End(Not run)## Not run:RunSVD(atac_small[['peaks']])## End(Not run)## Not run:RunSVD(atac_small)## End(Not run)