RunTFIDF function

Compute the term-frequency inverse-document-frequency

Compute the term-frequency inverse-document-frequency

Run term frequency inverse document frequency (TF-IDF) normalization on a matrix.

RunTFIDF(object, ...) ## Default S3 method: RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... ) ## S3 method for class 'Assay' RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... ) ## S3 method for class 'StdAssay' RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... ) ## S3 method for class 'Seurat' RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )

Arguments

  • object: A Seurat object

  • ...: Arguments passed to other methods

  • assay: Name of assay to use

  • method: Which TF-IDF implementation to use. Choice of:

    • 1: The TF-IDF implementation used by Stuart & Butler et al. 2019 (tools:::Rd_expr_doi("10.1101/460147") ). This computes log(TF×IDF)\log(TF \times IDF).
    • 2: The TF-IDF implementation used by Cusanovich & Hill et al. 2018 (tools:::Rd_expr_doi("10.1016/j.cell.2018.06.052") ). This computes TF×(log(IDF))TF \times (\log(IDF)).
    • 3: The log-TF method used by Andrew Hill. This computes log(TF)×log(IDF)\log(TF) \times \log(IDF).
    • 4: The 10x Genomics method (no TF normalization). This computes IDFIDF.
  • scale.factor: Which scale factor to use. Default is 10000.

  • idf: A precomputed IDF vector to use. If NULL, compute based on the input data matrix.

  • verbose: Print progress

Returns

Returns a Seurat object

Details

Four different TF-IDF methods are implemented. We recommend using method 1 (the default).

Examples

mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5) RunTFIDF(object = mat) RunTFIDF(atac_small[['peaks']]) RunTFIDF(atac_small[['peaks']]) RunTFIDF(object = atac_small)

References

https://en.wikipedia.org/wiki/Latent_semantic_analysis#Latent_semantic_indexing