Compute the term-frequency inverse-document-frequency
Run term frequency inverse document frequency (TF-IDF) normalization on a matrix.
RunTFIDF(object, ...) ## Default S3 method: RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... ) ## S3 method for class 'Assay' RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... ) ## S3 method for class 'StdAssay' RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... ) ## S3 method for class 'Seurat' RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )
object
: A Seurat object
...
: Arguments passed to other methods
assay
: Name of assay to use
method
: Which TF-IDF implementation to use. Choice of:
scale.factor
: Which scale factor to use. Default is 10000.
idf
: A precomputed IDF vector to use. If NULL, compute based on the input data matrix.
verbose
: Print progress
Returns a Seurat
object
Four different TF-IDF methods are implemented. We recommend using method 1 (the default).
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5) RunTFIDF(object = mat) RunTFIDF(atac_small[['peaks']]) RunTFIDF(atac_small[['peaks']]) RunTFIDF(object = atac_small)
https://en.wikipedia.org/wiki/Latent_semantic_analysis#Latent_semantic_indexing
Useful links