Thanks to: Frank Schaarschmidt, Gemechis Djira Dilba, Kornelius Rohmeyer
References
Hasler, M. and Hothorn, L.A. (2018): Multi-arm trials with multiple primary endpoints and missing values. Statistics in Medicine 37, 710--721, doi:10.1002/sim.7542.
Hasler, M. (2014): Multiple contrast tests for multiple endpoints in the presence of heteroscedasticity. The International Journal of Biostatistics 10, 17--28, doi:10.1515/ijb-2012-0015.
Hasler, M. and Hothorn, L.A. (2012): A multivariate Williams-type trend procedure. Statistics in Biopharmaceutical Research 4, 57--65, doi:10.1080/19466315.2011.633868.
Hasler, M. and Hothorn, L.A. (2011): A Dunnett-type procedure for multiple endpoints. The International Journal of Biostatistics 7, Article 3, doi:10.2202/1557-4679.1258.
Hasler, M. and Hothorn, L.A. (2008): Multiple contrast tests in the presence of heteroscedasticity. Biometrical Journal 50, 793--800, doi:10.1002/bimj.200710466.
Dilba, G. et al. (2006): Simultaneous confidence sets and confidence intervals for multiple ratios. Journal of Statistical Planning and Inference 136, 2640--2658, doi:10.1016/j.jspi.2004.11.009.
Examples
# Example 1:# A comparison of the groups B and H against the standard S, for endpoint# Thromb.count, assuming unequal variances for the groups. This is an# extension of the well-known Dunnett-test to the case of heteroscedasticity.data(coagulation)comp1 <- SimTestDiff(data=coagulation, grp="Group", resp="Thromb.count", type="Dunnett", base=3, alternative="greater", covar.equal=FALSE)comp1
# Example 2:# A comparison of the groups B and H against the standard S, simultaneously# for all endpoints, assuming unequal covariance matrices for the groups. This is# an extension of the well-known Dunnett-test to the case of heteroscedasticity# and multiple endpoints.data(coagulation)comp2 <- SimTestDiff(data=coagulation, grp="Group", resp=c("Thromb.count","ADP","TRAP"), type="Dunnett", base=3, alternative="greater", covar.equal=FALSE)summary(comp2)