SlimR1.0.8 package

Machine Learning-Assisted, Marker-Based Tool for Single-Cell and Spatial Transcriptomics Annotation

calculate_cluster_variability

Calculate Cluster Variability

calculate_expression_skewness

Calculate Expression Distribution Skewness

calculate_expression

Counts average expression of gene set (Use in package)

calculate_probability

Calculate gene set expression and infer probabilities with control dat...

Celltype_annotation_Cellmarker2

Uses "marker_list" from Cellmarker2 for cell annotation

Celltype_Annotation_Combined

Uses "marker_list" to generate combined plot for cell annotation

Celltype_annotation_Excel

Uses "marker_list" from Excel input for cell annotation

Celltype_Annotation_Features

Annotate cell types using features plot with different marker database...

Celltype_Annotation_Heatmap

Uses "marker_list" to generate heatmap for cell annotation

Celltype_annotation_PanglaoDB

Uses "marker_list" from PanglaoDB for cell annotation

Celltype_annotation_Seurat

Uses "marker_list" from Seurat object for cell annotation

Celltype_Annotation

Annotate Seurat Object with SlimR Cell Type Predictions

Celltype_Calculate

Uses "marker_list" to calculate probability, prediction results, AUC a...

Celltype_Verification

Perform cell type verification and generate the validation dotplot

estimate_batch_effect

Estimate Batch Effect Strength

extract_dataset_features

Extract Dataset Characteristics for Machine Learning

generate_training_data

Generate Training Data for Machine Learning Model

Markers_filter_Cellmarker2

Create Marker_list from the Cellmarkers2 database

Markers_filter_PanglaoDB

Create Marker_list from the PanglaoDB database

Parameter_Calculate

Adaptive Parameter Tuning for Single-Cell Data Annotation in SlimR

postprocess_parameters

Post-process Predicted Parameters

predict_optimal_parameters

Predict Optimal Parameters Using Trained Model

Read_excel_markers

Create "Marker_list" from Excel files ".xlsx"

Read_seurat_markers

Create "Marker_list" from Seurat object

train_parameter_model

Train Parameter Prediction Model

Annotates single-cell and spatial-transcriptomic (ST) data using marker datasets. Supports unified markers list ('Markers_list') creation from built-in databases (e.g., 'Cellmarker2', 'PanglaoDB', 'scIBD', 'TCellSI'), Seurat objects, or user-supplied Excel files. SlimR can predict calculate parameters by machine learning algorithms (e.g., 'Random Forest', 'Gradient Boosting', 'Support Vector Machine', 'Ensemble Learning'), and based on Markers_list, calculate gene expression of different cell types and predict annotation information and calculate corresponding AUC and annotate it, then verify it. At the same time, it can calculate gene expression corresponding to the cell type to generate a reference map for manual annotation (e.g., 'Heat Map', 'Feature Plots', 'Combined Plots'). For more details see Kabacoff (2020, ISBN:9787115420572).

  • Maintainer: Zhaoqing Wang
  • License: MIT + file LICENSE
  • Last published: 2025-10-08