Summarize, print, and extract objects from slm objects.
## S3 method for class 'slm'summary(object, correlation,...)## S3 method for class 'mslm'summary(object,...)## S3 method for class 'slm'print(x, digits,...)## S3 method for class 'summary.slm'print(x, digits, symbolic.cor, signif.stars,...)## S3 method for class 'slm'fitted(object,...)## S3 method for class 'slm'residuals(object,...)## S3 method for class 'slm'coef(object,...)## S3 method for class 'slm'extractAIC(fit, scale =0, k =2,...)## S3 method for class 'slm'deviance(object,...)
Arguments
object,x,fit: object of class slm.
digits: minimum number of significant digits to be used for most numbers.
scale: optional numeric specifying the scale parameter of the model, see 'scale' in 'step'. Currently only used in the '"lm"' method, where 'scale' specifies the estimate of the error variance, and 'scale = 0' indicates that it is to be estimated by maximum likelihood.
k: numeric specifying the "weight" of the equivalent degrees of freedom ('edf') part in the AIC formula.
symbolic.cor: logical; if TRUE, the correlation of coefficients will be printed. The default is FALSE
signif.stars: logical; if TRUE, P-values are additionally encoded visually as ``significance stars'' in order to help scanning of long coefficient tables. It defaults to the show.signif.stars' slot of options'.
correlation: logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.
...: additional arguments passed to methods.
Returns
print.slm and print.summary.slm return invisibly. fitted.slm, residuals.slm, and coef.slm
return the corresponding components of the slm object. extractAIC.slm and deviance.slm return the AIC and deviance values of the fitted object.
References
Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for ,